
The CORDET Framework

C2 Implementation

- USER REQUIREMENTS -

Alessandro Pasetti & Vaclav Cechticky

Created on: 09/02/2018, at: 10:25

Revision 0.7.1
PP-SP-COR-0002

P&P Software GmbH
High Tech Center 1

8274 Tägerwilen
Switzerland

Web site: www.pnp-software.com
E-mail: pnp-software@pnp-software.com

Abstract

This document defines, justifies, and verifies the User Requirements
for the C2 Implementation of the CORDET Framework. The CORDET
Framework is a software framework for service-oriented embedded appli-
cations. The CORDET Framework defines an application in terms of the
services it provides to other applications and in terms of the services it
uses from other applications.

The CORDET Framework is implementation-independent. The C2
Implementation is a C-language implementation of the CORDET compo-
nents. The main features of the C1 Implementation are: small memory
footprint, small CPU demands, scalability, and high reliability.

The C2 Implementation is provided with a Qualification Data Package
which can be used to support the certification of applications built using
its components.

1

www.pnp-software.com
mailto:pnp-software@pnp-software.com

PP-SP-COR-0002 Revision 0.7.1

Contents

1 Introduction 6
1.1 Intended Use of C1 Implementation 6
1.2 Requirement Definition . 6

1.2.1 Requirement Justification 7
1.2.2 Requirement Implementation 7
1.2.3 Requirement Verification 7

2 Functional Requirements 8
2.1 CORDET Framework Requirements 8
2.2 C2 Adaptation Points . 10
2.3 Component Instantiation . 11
2.4 Component Factories . 13

3 Non-Functional Requirements 15
3.1 Coding Requirements . 15
3.2 Adaptation Mechanisms . 16
3.3 Resource Requirements . 17
3.4 Verification Requirements . 18
3.5 Dependency Requirements . 19

A CORDET Framework Standard Requirements 20

B CORDET Framework Adaptation Points 38

C C2 Adaptation Points 64

D CORDET Framework Behaviour 73
D.1 Verification of State Machine Behaviour 73
D.2 Verification of Procedure Behaviour 78

E State Machine and Procedure Diagrams 82

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the MPLv2 of the

C2 Implementation of the CORDET Framework.

2

PP-SP-COR-0002 Revision 0.7.1

List of Figures
E.1 Base State Machine . 82
E.2 Initialization and Reset Procedures 82
E.3 Application State Machine . 82
E.4 The OutStream State Machine 83
E.5 The InStream State Machine . 83
E.6 The Packet Collect Procedure . 84
E.7 The OutComponent State Machine 84
E.8 The OutLoader Load Procedure 84
E.9 The OutManager Load Procedure 85
E.10 The OutManager Execution Procedure 85
E.11 The Registry Start Tracking and Registry Update Procedures . . 86
E.12 The Enable State Determination Procedure 86
E.13 The InLoader Execution Procedure 87
E.14 The InLoader Load Command/Report Procedure 87
E.15 The InCommand State Machine 88
E.16 The InReport Execution Procedure 88
E.17 The InManager Load Procedure 88
E.18 The InManager Execution Procedure 89

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the MPLv2 of the

C2 Implementation of the CORDET Framework.

3

PP-SP-COR-0002 Revision 0.7.1

List of Tables
A.1 Implementation of CORDET Framework Requirements 21
B.1 CORDET Adaptation Points . 39
C.1 C2 Adaptation Points . 65
D.1 Verification of Base State Machine 73
D.2 Verification of Application State Machine 74
D.3 Verification of OutStream State Machine 74
D.4 Verification of InStream State Machine 76
D.5 Verification of OutComponent State Machine 76
D.6 Verification of InCommand State Machine 77
D.7 Verification of Initialization Procedure 78
D.8 Verification of Reset Procedure 78
D.9 Verification of Packet Collect Procedure 78
D.10 Verification of Enable State Determination Procedure 79
D.11 Verification of InLoader Execution Procedure 79
D.12 Verification of InLoader Load Command/Report Procedure . . . 80

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the MPLv2 of the

C2 Implementation of the CORDET Framework.

4

PP-SP-COR-0002 Revision 0.7.1

No part of this publication may be reproduced, transmitted, transcribed,
stored in any retrieval system, or translated into any language by any means

without express prior written permission of P&P Software GmbH.

Copyright c©2013 P&P Software GmbH. All Rights Reserved.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the MPLv2 of the

C2 Implementation of the CORDET Framework.

5

PP-SP-COR-0002 Revision 0.7.1

1 Introduction

This document defines, justifies and verifies the user requirements for the C2
Implementation. The C2 Implementation is a C-language implementation of the
CORDET Framework. The CORDET Framework is a software framework for
service-oriented distributed embedded applications. The CORDET Framework
defines an application in terms of the services it provides to other applications
and in terms of the services it uses from other applications.

A service is implemented by a set of commands through which an application
is asked to perform certain activities and by a set of reports through which an
application gives visibility over its internal state. The CORDET Framework
defines the components to receive, send, distribute, and process commands and
reports. The CORDET Framework is defined in [4].

1.1 Intended Use of C1 Implementation

Although the C2 Implementation can be used wherever there is a need to im-
plement a system of distributed applications which exchange CORDET ser-
vice requests, the high reliability of the implementation, the emphasis placed
on formally specifying and verifying its expected behaviour, and the small de-
mands on memory and processing resources mean that the C2 Implementation
is especially well-suited for implementing mission-critical embedded applications
within a service-oriented distributed architecture.

Thus, the intended use of the C2 Implementation is to support the implementa-
tion of the CORDET service concept for mission-critical embedded applications.

1.2 Requirement Definition

Requirements are defined in tables with the following format:

CR-’x’/’V’ 〈Requirement Title〉

Requirement 〈Formulation of requirement〉

Note 〈Explicatory notes for requirement〉

Justification 〈Justification of requirement〉

Implementation 〈Dscription of how requirement is implemented〉

Verification 〈Dscription of how requirement is verified〉

Here, the suffix ’x’ is a numerical identifier which uniquely identifies the require-
ment within this document. The suffix ’V’ identifies the verification method for
the requirement according to the convention presented in section 1.2.3.

The explicatory notes are appended to the definition of the requirements where
there is a need to clarify the terms which are used in their formulation.

In addition to their definition, this document also provides the following infor-

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the MPLv2 of the

C2 Implementation of the CORDET Framework.

6

PP-SP-COR-0002 Revision 0.7.1

mation for each requirement: a justification of the requirement; a description of
how the requirement is implemented; and a description of how the requirement
is verified.

1.2.1 Requirement Justification

For each requirement, a justification is provided which validates the require-
ment. Requirements are justified with respect to the intended use of the C2
Implementation. The intended use of the C2 Implementation is to support the
implementation of the CORDET service concept for mission-critical embedded
applications (see section 1.1). Hence, a requirement is justified in proportion to
its ability to further the adequacy of the C2 Implementation to support the im-
plementation of the CORDET service concept in an environment where memory
and processing resources are constrained and where reliability is of paramount
importance.

1.2.2 Requirement Implementation

For each requirement, the function or data structure or other code-level con-
struct in the source code which implements it is identified.

1.2.3 Requirement Verification

Verification information is provided for each requirement to demonstrate the
correct implementation of the requirement. The following verification methods
are possible:

• Verification by Review (’R’): the requirement is verified by inspecting the
code or its documentation.

• Verification by Analysis (’A’): the requirement is verified by analysing the
code, possibly with the help of a tool.

• Verification by Test (’T’): the requirement is verified by one or more test
cases in the Test Suite.

One single verification method is defined for each requirement. This is identified
as part of the requirement definition (see the description of the requirement
format in section 1.2).

The Test Suite which is used for the verification by test is a complete application
which demonstrates all aspects of the behaviour of the CORDET components.
It consists of a sequence of Test Cases which are independent of each other. Each
Test Case focuses on one particular functional aspect of the C2 Implementation.
The Test Suite is distributed with the C2 Implementation. It is documented as
part of the Doxygen documentation for the C2 Implementation and is described
in the C2 Implementation User Manual (see reference [5]).

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the MPLv2 of the

C2 Implementation of the CORDET Framework.

7

PP-SP-COR-0002 Revision 0.7.1

2 Functional Requirements

This section defines the functional requirements for the C2 Implementation.
The functional requirements are those which define the functional behaviour of
the components which implement the CORDET Framework.

2.1 CORDET Framework Requirements

The CORDET Framework is specified through a set of formal requirements
defined in reference [4]. Four types of requirements are recognized in reference
[4]:

• Standard Requirements which define a desired feature of the framework.
They are analogous in scope and format to the user requirements of an
ordinary (non-framework) software application.

• Adaptation Requirement which define the points where the framework
behaviour can be extended by the application developers (Adaptation
Points). In some cases, the definition of an adaptation point is accompa-
nied by the definition of the default options offered by the framework for
that adaptation point.

• Usage Constraint Requirements which define the constraints on how the
components offered by the framework may be used by application devel-
opers.

• Property Requirements which define behavioural properties which are guar-
anteed to hold on all applications which: (a) are instantiated from the
framework by closing its adaptation points, and (b) comply with the
framework’s usage constraints.

An implementation of the CORDET Framework should cover the first two types
of requirements (the other two types of requirements are only relevant to ap-
plication developers who wish to instantiate the framework to build a specific
application). This section defines this coverage for the C2 Implementation.

CR-2.1.1/T CORDET Standard Requirements

Requirement The C2 Implementation shall implement the standard
requirements of the CORDET Framework of [4].

Justification The intended use of the C2 Implementation is to imple-
ment the CORDET Framework.

Implementation Appendix A shows how each standard requirement de-
fined in reference [4] is implemented in the C2 Imple-
mentation.

Verification Appendix A shows how each standard requirement de-
fined in reference [4] is verified in the C2 Implementa-
tion.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the MPLv2 of the

C2 Implementation of the CORDET Framework.

8

PP-SP-COR-0002 Revision 0.7.1

CR-2.1.2/R CORDET Adaptation Requirements

Requirement The C2 Implementation shall implement the adaptation
requirements of the CORDET Framework of reference
[4].

Justification The intended use of the C2 Implementation is to imple-
ment the CORDET Framework.

Implementation The adaptation requirements of reference [4] define a
number of adaptation points. Appendix B shows how
each adaptation point of reference [4] is implemented in
the C2 Implementation.

Verification See explanatory text at the beginning of appendix B.
Note also that the Adaptation Requirements are veri-
fied by showing that a running application can be built
by closing each Adaptation Point (or using the default
value of an Adaptation Point). This is done in the Test
Suite. The Test Suite exercises all framework function-
alities (it has 100% statement coverage) and therefore
needs all Adaptation Points to be closed.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the MPLv2 of the

C2 Implementation of the CORDET Framework.

9

PP-SP-COR-0002 Revision 0.7.1

2.2 C2 Adaptation Points

CR-2.2.1/R C2 Adaptation Points

Requirement The C2 Implementation shall support the adaptation
points listed in table C.1.

Justification These adaptation points arise as a result of the design
choices made for the C2 Implementation.

Implementation The last column in table C.1 describes how each adap-
tation points is implemented and what its default value
(if any) is.

Verification See Implementation.

CR-2.2.2/T Default Values for Adaptation Points

Requirement The C2 Implementation shall provide default values for
all adaptation points (both those defined at CORDET
Framework level and those defined at C2 Implementa-
tion level).

Justification Provision of default values facilitates the definition of
test cases and demonstrators.

Implementation The default values for the column in table C.1 describes
how each adaptation points is implemented and what
its default value is.

Verification The default values for the C2 Implementation are those
used for the Test Suite which constitutes a complete
instantiation of the CORDET Framework and defined
in appendix A of the reference [5].

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the MPLv2 of the

C2 Implementation of the CORDET Framework.

10

PP-SP-COR-0002 Revision 0.7.1

2.3 Component Instantiation

CR-2.3.1/T Component Instantiation

Requirement The C2 Implementation shall provide Factory Functions
to instantiate the following types of components: Out-
Stream, OutFactory, OutManager, OutLoader, OutReg-
istry, InStream, InFactory, InManager, InLoader, and
InRegistry.

Justification The CORDET Framework distinguishes between com-
ponents which are subject to early instantiation and
those which are subject to late instantiation (see sec-
tion 3.1 of reference [4]). The component types listed in
this requirements are those which are subject to early
instantiation. These are the components which must be
instatiated during the application start-up.

Implementation The factory functions are the functions with names like:
CrFwXxxMake where Xxx is the name of the component
type.

Verification For each component type, a set of test cases is defined in:
CrFwXxxTestCases.h where Xxx is the name of the com-
ponent type. These test cases verify the factory func-
tions.

CR-2.3.2/R Attribute Setting Order

Requirement When a factory function configures a newly-created
packet, it shall set its attributes in the following order:
packet report/command flag (which determines whether
the packet holds a report or a command), packet source
(i.e. the host application), packet group, packet type,
packet sub-type, packet discriminant, and then other
attributes in an undefined order.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the MPLv2 of the

C2 Implementation of the CORDET Framework.

11

PP-SP-COR-0002 Revision 0.7.1

Justification The framework provides one single interface for decod-
ing and encoding packets in module CrFwPckt. This is
obviously suitable for application developers who wish
to use the same layout for all packets used by the appli-
cation, irrespective of their type or of their destination
or source or their other characteristics. If this is not pos-
sible, then the getter and setter functions of interface
CrFwPckt.h must implement logic which makes their
outcome dependent on the content of the packet itself.
Thus, for instance, if different packet sources use dif-
ferent layouts, the getter functions will have to inspect
the source of a packet before deciding how to decode
the value of a packet’s attribute. In the case of the set-
ter functions, this approach requires that the order in
which the packet attributes are set be specified so that
the logic in the setter functions can rely on this ordering
to decide how to set attribute values.

Implementation The only place in the CORDET Framework
where newly-created packets are configured is
the function to create a new OutComponent
CrFwOutFactoryMakeOutCmp.

Verification Inspection of the implementation of func-
tion CrFwOutFactoryMakeOutCmp in module
CrFwOutFactory shows that the requirement is
fulfilled.

CR-2.3.3/R Irreversibility of Instantiation

Requirement It shall not be possible to destroy an instance of the com-
ponent types listed in the previous requirement.

Justification The CORDET Framework specifies that components
subject to early instantiation must be instantiated dur-
ing the application start-up but it does not say whether
they should be destroyed and re-created when the ap-
plication is reset. In the interest of simplicity, the C2
Implementation bars dynamic destruction of these com-
ponents.

Implementation The C2 Implementation does not define any release

function through which the instances created by the Fac-
tory Functions may be destroyed.

Verification See implementation.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the MPLv2 of the

C2 Implementation of the CORDET Framework.

12

PP-SP-COR-0002 Revision 0.7.1

2.4 Component Factories

FW-2.4.1/R Component Pools in Factories

Requirement The components factories of the C2 Implementation
shall manage dynamic component creation through
pools of pre-allocated component instances.

Note The component factories manage the dynamic alloca-
tion of components through a make and a release op-
eration. The intention of this requirement is that these
operations be implemented by creating a pool of pre-
allocated components at initialization time and by then
allocating and releasing component instances from this
pool.

Justification Use of a pre-allocated pool of component enchances
static predictability of behaviour and this important for
the target applications of the C2 Implementation.

Implementation There are only two factory components in the C2 Im-
plementation: the OutFactory and the InFactory. The
OutFactory defines array outCmp in CrFwOutFactory.c

to hold the pre-allocated OutComponent instances.
The InFactory defines arrays inCmd and inRep in
CrFwInFactory.c to hold the pre-allocated InCom-
mand and InReport instances.

Verification See Implementation.

CR-2.4.2/R Dynamic Memory Allocation

Requirement Dynamic memory allocation through calls to malloc

shall be done exclusively as part of component initial-
ization.

Justification The component instantiation model of the CORDET
Framework dictates that resource allocation be done as
part of a component’s Initialization Procedure (see sec-
tion 3.2 of [4].

Implementation Calls to malloc are used in the follow-
ing functions: CrFwInManagerInitAction,
CrFwOutManagerInitAction and
CrFwOutRegistryInitAction.

Verification Functions CrFwInManagerInitAction,
CrFwOutManagerInitAction and
CrFwOutRegistryInitAction implement the ini-
tialization action of the InManager, OutManager and
OutRegistry components and are therefore executed as
part of these component initialization.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the MPLv2 of the

C2 Implementation of the CORDET Framework.

13

PP-SP-COR-0002 Revision 0.7.1

CR-2.4.3/R Dynamic Memory Release

Requirement If a component performs a malloc call as part of its ini-
tialization action, then it shall also perform a matching
free call as part of its shutdown action.

Justification The shutdown action is symmetric to the initialization
action. This requirement therefore helps ensure that
there are no memory leaks.

Implementation Calls to free are used in the following functions:
CrFwInManagerShutdown, CrFwOutManagerShutdown

and CrFwOutRegistryShutdown.

Verification Functions CrFwInManagerShutdown,
CrFwOutManagerShutdown and
CrFwOutRegistryShutdown implement the shutdown
operation of the InManager, OutManager and Out-
Registry components which are the components which
perform calls to malloc as part of their initialization
(see previous requirement).

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the MPLv2 of the

C2 Implementation of the CORDET Framework.

14

PP-SP-COR-0002 Revision 0.7.1

3 Non-Functional Requirements

This section defines the non-functional requirements of the C2 Implementation.
Non-functional requirements impose overall constraints on the use, design, or
implementation of the C2 Implementation.

3.1 Coding Requirements

CR-3.1.1/R Implementation Language

Requirement The C2 Implementation shall be implemented in the
ANSI C language.

Justification The C Language is the standard language for embedded
applications.

Implementation All the modules offered by the C2 Implementation are
implemented in C and are compiled with the gcc com-
piler using the -ansi -pedantic option which enforces
compliance with ANSI C.

Verification See implementation.

CR-3.1.2/T Compiler Warning

Requirement The C2 Implementation shall not generate any warnings
when compiled with the GCC compiler with all warnings
enabled.

Justification Warning may indicate weaknesses in the code or poten-
tial errors.

Implementation See verification.

Verification The C2 Implementation Acceptance Test Procedure (see
reference [5]) compiles all source files of the implemen-
tation using gcc with the option -Wall.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the MPLv2 of the

C2 Implementation of the CORDET Framework.

15

PP-SP-COR-0002 Revision 0.7.1

3.2 Adaptation Mechanisms

FW-3.2.1/R Adaptation Mechanism

Requirement The C2 Implementation shall exclusively support static
adaptation mechanisms.

Note An adaptation mechanism is static if it only allows the
adaptation to be performed at compile time. Thus,
static adaptation forces application developers to decide
how to close an adaptation point at compile time.

Justification Restriction to static adaptation mechanisms enhances
static predictability of behaviour which is important for
mission-critical applications.

Implementation The adaptation mechanisms supported by the C2 Im-
plementation are (see section 6 of reference [5]):

• Define Constant: a framework component uses a
#DEFINE constant whose value may be overridden
by application developers.

• Define Function: a framework component uses a
function pointer and application developers must
provide an implementation for the missing func-
tion (or, if available, may choose to use the default
implementation provided at framework level)

• Implement Interface: the framework defines an in-
terface as a C header file and application develop-
ers must provide an implementation for it.

• Define Type: a framework component uses a vari-
ables of a type defined as a typedef and appli-
cation developers may override the default type
definition.

Verification The adaptation mechanisms listed above are compile-
time adaptation mechanisms.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the MPLv2 of the

C2 Implementation of the CORDET Framework.

16

PP-SP-COR-0002 Revision 0.7.1

3.3 Resource Requirements

FW-3.3.1/T Code Memory Footprint

Requirement The code memory footprint of the C2 Implementa-
tion shall be independent of the number of instances
of framework components required by an applica-
tion.

Note Ideally, it would be desirable to impose a requirement on
the memory occupation of the C2 Implementation. This
is not possible because memory occupation depends on
the tool chain used to compile an application and on
the target processor. This requirement aims to restrict
memory occupation in a manner which is independent
of the compilation tool chain and of the execution hard-
ware.

Justification Embedded applications are often memory-
constrained.

Implementation See requirement verification.

Verification The C2 Implementation provides a set of factory func-
tions and factory components to create instances of
framework components. There is no code generation
facility (neither explicit, nor implicit through the use of
macros) which generates ad hoc code for each compo-
nent instance. Thus, the code base of the C2 Imple-
mentation is fixed and independent of the number of
deployed component instances.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the MPLv2 of the

C2 Implementation of the CORDET Framework.

17

PP-SP-COR-0002 Revision 0.7.1

3.4 Verification Requirements

CR-3.4.1/T Test Coverage

Requirement The C2 Implementation shall be provided with a Test
Suite offering 100% statement, branch and condition
coverage.

Justification The level of coverage provided by the requirement is that
typically used in mission-critical applications.

Implementation The Test Suite is implemented in a set of Test Cases
defined in CrFwXxxTestCases.h where Xxx is the name
of a component type. The main program for the Test
Suite is in CrFwTestSuite.h.

Verification The Acceptance Test Procedure of the C2 Implementa-
tion (see [5]) uses the gcov tool to measure the state-
ment and branch coverage of the Test Suite. Note that
the C2 Implementation does not use any boolean ex-
pressions in the decision points of the code (e.g. in the
if clauses). Decisions are always taken on the basis
of the outcome of the evaluation of a single primitive
Boolean condition. Hence, branch coverage implies con-
dition coverage. In a few cases, the design may make full
coverage impossible to achieve. The reason for the par-
tial coverage is explained in comments in the code which
are extracted and printed in the test report.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the MPLv2 of the

C2 Implementation of the CORDET Framework.

18

PP-SP-COR-0002 Revision 0.7.1

3.5 Dependency Requirements

CR-3.5.1/R External Modules

Requirement The C2 Implementation shall not require any external
modules other than C’s stdlib and string and the pro-
cedure and state machine modules of the C1 Implemen-
tation.

Justification Minimization of dependencies on external libraries helps
minimize the memory footprint of the application us-
ing the C2 Implementation and facilitates its qualifica-
tion. The stdlib and string modules are likely to be
used in any C application and hence they accepted. The
C1 Implementation is provided with a qualification data
package and its state machine and procedure modules
have no external dependencies other than stdlib and
string.

Implementation See verification.

Verification Inspection of the C2 Implementation files shows that no
external modules other than stdlib and string and
the state machine modules FwSm*.h and the procedure
modules FwPr*.h of the C1 Implementation are used.
The compilation and linking process for the Test Suite
shows that no other libraries need be linked.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the MPLv2 of the

C2 Implementation of the CORDET Framework.

19

PP-SP-COR-0002 Revision 0.7.1

A CORDET Framework Standard Requirements

The C2 Implementation implements the standard requirements of the CORDET
Framework. Table A.1 lists the standard requirements of the CORDET Frame-
work as they are defined in reference [4] and, for each requirement, it describes
how the requirement is implemented in the C2 Implementation and how the im-
plementation is verified. The requirement identifier (first column in the table)
is the same as used in reference [4].

The requirements often refer to state machine or procedure diagrams. A com-
plete list of the diagrams of the state machines and procedures which define the
behaviour of the CORDET components can be found in section E.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the MPLv2 of the

C2 Implementation of the CORDET Framework.

20

P
P

-S
P

-C
O

R
-0

00
2

R
ev

ision
0.7.1

Table A.1: Implementation of CORDET Framework Requirements

ID Requirement Text Requirement Implementation Requirement Verification

BAS-
1

All components provided by
the CORDET Framework shall
implement the behaviour of the
Base State Machine of figure
E.1.

The behaviour of the Base State Machine is
implemented in CrFwBaseCmp. Each frame-
work component is built around a state ma-
chine instance which is derived from the Base
State Machine (see section 5 of reference [5]).
State machine derivation is done using the ex-
tension mechanism of the C1 Implementation
of the FW Profile (see [5]) which guarantees
that the derived state machines have the same
behaviour as the base state machine. Frame-
work component are instantiated by Make
functions (see section 6.1 of reference [5]).
The creation of their state machine as an ex-
tension of the Base State Machine is done in
these Make functions.

The behaviour of the Base State Machine is
verified in table D.1. The behaviour of its
two procedures (Initialization Procedure and
Reset Procedure) is verified in table D.7 and
D.8). The inheritance of this behaviour by
all other framework state machines is guaran-
teed by the extension mechanism of the FW
Profile as it is implemented in the C1 Imple-
mentation and by the fact that all framework
components are created as extension of a Base
State Machine.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
M
P
L
v
2
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

21

P
P

-S
P

-C
O

R
-0

00
2

R
ev

ision
0.7.1

ID Requirement Text Requirement Implementation Requirement Verification

BAS-
2

The CORDET Framework shall
implement an API through
which applications can query a
CORDET Component for its
current state (including, if
applicable, its current
sub-state).

Only two levels of state machine embed-
ding are used in the C2 Implementation.
Query of the outer state (which is a state
of the Base State Machine) is provided
by functions: CrFwCmpIsInCreated,
CrFwCmpIsInInitialized and
CrFwCmpIsInConfigured. Embedded
states are only embedded in state CONFIG-
URED and query of this embedded state
is provided by functions with names like
CrFw〈Type〉IsIn〈State〉(〈Inst〉).

The state query functions are guaranteed to
be verified because the Test Suite has 100%
statement coverage.

AST-
1

The CORDET Framework shall
implement the Application
State Machine of figure E.3.

The Application State Machine is imple-
mented in CrFwAppSm.

The behaviour of the Application State Ma-
chine is verified in table D.2.

AST-
3

The CORDET Framework shall
provide an API through which
applications can query the
Application State Machine for
its current state.

This API is provided by func-
tions CrFwAppSmIsInStartUp,
CrFwAppSmIsInNormal,
CrFwAppSmIsInReset and
CrFwAppSmIsInShutdown.

The state query functions are guaranteed to
be verified because the Test Suite has 100%
statement coverage.

FAC-
1

The factory components shall
be provided as extensions of
the Base Component.

The InFactory component is created by func-
tion CrFwInFactoryMake which creates it as
an extension of the Base State Machine. Sim-
ilarly, OutFactory component is created by
function CrFwOutFactoryMake which creates
it as an extension of the Base State Machine.

InFactory creation is verified in the test cases
in CrFwInFactoryTestCase.h and OutFac-
tory creation is verified in the test cases in
CrFwOutFactoryTestCase.h.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
M
P
L
v
2
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

22

P
P

-S
P

-C
O

R
-0

00
2

R
ev

ision
0.7.1

ID Requirement Text Requirement Implementation Requirement Verification

FAC-
2

The factory components shall
define an API offering two
operations: Make and Release.

The make operations for the In-
Factory are implemented in func-
tions CrFwInFactorMakeInCmd and
CrFwInFactorMakeInRep. The release
operations are implemented in func-
tions CrFwInFactorReleaseInCmd and
CrFwInFactorReleaseInRep. The make
operation for the OutFactory is implemented
in function CrFwOutFactorMakeOutCmp. The
release operation is implemented in function
CrFwOutFactorReleaseOutCmp.

The make operation for InCommands is ver-
ified in test case CrFwInCmdTestCase1. The
make operation for InReports is verified in
test case CrFwInRepTestCase1. The make
operation for OutComponents is verified in
test case CrFwOutCmpTestCase1.

FAC-
3

The Make operation shall either
fail and return nothing or
succeed and return a
component instance of the type
specified by the Make

arguments.

The make operations for the In-
Factory are implemented in func-
tions CrFwInFactorMakeInCmd and
CrFwInFactorMakeInRep. The make
operation for the OutFactory is implemented
in function CrFwOutFactorMakeOutCmp.

For the InFactory, successful creation
is verified in CrFwInFactoryTestCase1;
unsuccessful creation is verified
in CrFwInFactoryTestCase2 and
CrFwInFactoryTestCase5. For the
OutFactory, successful creation is ver-
ified in CrFwOutFactoryTestCase1;
unsuccessful creation is verified in
CrFwOutFactoryTestCase2.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
M
P
L
v
2
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

23

P
P

-S
P

-C
O

R
-0

00
2

R
ev

ision
0.7.1

ID Requirement Text Requirement Implementation Requirement Verification

FAC-
4

The Release operation shall
take as argument the
component instance to be
released.

The release operations for the In-
Factory are implemented in func-
tions CrFwInFactorReleaseInCmd and
CrFwInFactorReleaseInRep. The release
operation for the OutFactory is implemented
in function CrFwOutFactorReleaseOutCmp.

The release functions are guaranteed to be
verified because the Test Suite has 100%
statement coverage.

OST-
1

The CORDET Framework shall
provide an OutStream
component as an extension of
the Base Component.

The OutStream component is created by
function CrFwOutStreamMake which creates it
as an extension of the Base State Machine.

OutStream creation is verified in the test
cases in CrFwOutStreamTestCase.h.

OST-
2

The behaviour of the
OutStream component in state
CONFIGURED shall be as
defined by the OutStream State
Machine of figure E.4.

The function CrFwOutStreamMake builds an
instance of an OutStream by first extend-
ing a Base State Machine and then embed-
ding within its CONFIGURED state an Out-
Stream State Machine.

The behaviour of the OutStream State Ma-
chine is verified in table D.3.

OST-
4

The Packet Queue in the
OutStream shall be managed as
a FIFO queue.

The packet queue of the OutStream uses the
implementation of module CrFwPcktQueue.
Module.

FIFO order management of pack-
ets in packet queues is verified in
CrFwPacketQueueTestCase1.

OST-
6

The OutStream shall provide
visibility over the state of its
Packet Queue (number of
packets in the queue and
number of empty slots still
available).

The number of pending
packet is provided by function
CrFwOutStreamGetNOfPendingPckts and
the queue size is provided by function
CrFwOutStreamGetPcktQueueSize.

The functions to check the number of pend-
ing packets and the size of the Packet Queue
are verified in CrFwOutStreamTestCase1 and
CrFwOutStreamTestCase3.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
M
P
L
v
2
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

24

P
P

-S
P

-C
O

R
-0

00
2

R
ev

ision
0.7.1

ID Requirement Text Requirement Implementation Requirement Verification

IST-1 The CORDET Framework shall
provide an InStream
component as an extension of
the Base Component.

The InStream component is created by func-
tion CrFwInStreamMake which creates it as
an extension of the Base State Machine.

InStream creation is verified in the test cases
in CrFwOutStreamTestCase.h.

IST-2 The behaviour of the InStream
component in state
CONFIGURED shall be as
defined by the InStream State
Machine of figure E.5 and by
the Packet Collect Procedure of
figure E.6.

The function CrFwInStreamMake builds an
instance of an InStream by first extending
a Base State Machine and then embedding
within its CONFIGURED state an InStream
State Machine. The Packet Collect Proce-
dure is implemented in function DoActionB

in CrFwInStream.h.

The behaviour of the InStream State Machine
is verified in table D.4. The behaviour of the
Packet Collect Procedure is verified in table
D.9

IST-3 The Packet Queue in the
InStream shall be managed as a
FIFO queue.

The packet queue of the InStream uses the
implementation of module CrFwPcktQueue.
Module.

FIFO order management of pack-
ets in packet queues is verified in
CrFwPacketQueueTestCase1.

IST-5 The InStream shall provide
visibility over the state of its
Packet Queue (number of
packets in the queue and
number of empty slots still
available).

The number of pending packet is provided by
function CrFwInStreamGetNOfPendingPckts

and the queue size is provided by function
CrFwInStreamGetPcktQueueSize.

The function to check the number of pending
items is verified in CrFwInStreamTestCase3;
the function to verify the size of the packet
queue is verified in CrFwInStreamTestCase4.

OSR-
1

The CORDET Framework shall
provide an OutStreamRegistry
component as an extension of
the Base Component.

The OutStreamRegistry function is imple-
mented in the OutStream itself (in function
CrFwOutStreamGet).

The CrFwOutStreamGet) function is verified
in test case CrFwInStreamTestCase4.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
M
P
L
v
2
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

25

P
P

-S
P

-C
O

R
-0

00
2

R
ev

ision
0.7.1

ID Requirement Text Requirement Implementation Requirement Verification

OSR-
3

The OutStreamRegistry
component shall define an API
offering one operation:
OutStreamGet.

The OutStreamGet operation is implemented
by function CrFwOutStreamGet.

The CrFwOutStreamGet) function is verified
in test case CrFwInStreamTestCase4.

OSR-
4

The OutStreamGet operation
shall either fail and return
nothing, or succeed and return
the OutStream component
associated to the command or
report destination specified in
its argument.

The OutStreamGet operation is implemented
by function CrFwOutStreamGet.

Both kinds of return values for the
CrFwOutStreamGet) function are verified in
test case CrFwInStreamTestCase4.

OSR-
5

The encoding of the command
or report destination passed in
a call the OutStreamGet

operation shall be the same as
the encoding of the destination
attribute of commands and
reports.

The argument of CrFwOutStreamGet is of
type CrFwDestSrc t and this is the same type
as used for a report or command destination
in function CrFwPcktSetDest.

The CrFwOutStreamGet) function is verified
in test case CrFwInStreamTestCase4.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
M
P
L
v
2
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

26

P
P

-S
P

-C
O

R
-0

00
2

R
ev

ision
0.7.1

ID Requirement Text Requirement Implementation Requirement Verification

OCM-
1

The CORDET Framework shall
provide an OutComponent
component as an extension of
the Base Component.

The OutComponent components are created
by function CrFwOutFactoryMakeOutCmp

which returns an instance taken from a
pool of pre-allocated components. The pre-
allocated components are created by function
OutFactoryInitAction as extensions of a
Base OutComponent which is created by
function CrFwOutCmpMakeBase and which is
itself an extension of a Base State Machine.

The function CrFwOutFactoryMakeOutCmp is
verified in test cases CrFwOutCmpTestCase1

to CrFwOutCmpTestCase6.

OCM-
2

The behaviour of the
OutComponent in state
CONFIGURED shall be as
defined by the OutComponent
State Machine of figure E.7.

The function CrFwOutCmpMakeBase builds
the Base OutComponent from which all Out-
Components are derived by extending the
Base State Machine and then embedding
within its CONFIGURED state an OutCom-
ponent State Machine.

The behaviour of the OutComponent State
Machine is verified in table D.5.

OCM-
4

The OutComponent component
shall provide access to the
attributes of the command or
report instance that the
OutComponent encapsulates.

The command or report attributes can be
accessed through functions with names like:
CrFwOutCmpGet*.

The getter functions for the command and
report attributes are verified in test case
CrFwOutCmpTestCase1.

OFT-
1

The OutFactory component
shall encapsulate the instance
creation process for
OutComponent components.

Instances of OutComponents are created by
function CrFwOutFactoryMakeOutCmp.

Function CrFwOutFactoryMakeOutCmp is ver-
ified in test case CrFwOutFactoryTestCase4.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
M
P
L
v
2
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

27

P
P

-S
P

-C
O

R
-0

00
2

R
ev

ision
0.7.1

ID Requirement Text Requirement Implementation Requirement Verification

OFT-
2

The Make operation of the
OutFactory component shall
take as arguments the service
type, command or report
sub-type and discriminant
value of the command or report
to be encapsulated by the
OutComponent.

Instances of OutComponents are created by
function CrFwOutFactoryMakeOutCmp.

Function CrFwOutFactoryMakeOutCmp is ver-
ified in test case CrFwOutFactoryTestCase4.

OFT-
3

The OutComponents returned
by the Make operation of the
OutFactory shall have their
service type, command/report
sub-type, and discriminant
attribute set in accordance with
the value of the arguments of
the Make operation.

Instances of OutComponents are created by
function CrFwOutFactoryMakeOutCmp.

The correctness of the type, sub-type
and discriminant of a newly created
OutComponent is verified in test case
CrFwOutCmpTestCase1.

OFT-
4

The OutComponents returned
by the Make operation of the
OutFactory shall have their
identifier attribute set to
represent the number of
components successfully
created by the factory since it
was initialized.

Instances of OutComponents are created by
function CrFwOutFactoryMakeOutCmp.

The correctness of the instance identifier of
a newly created OutComponent is verified in
test case CrFwOutCmpTestCase1.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
M
P
L
v
2
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

28

P
P

-S
P

-C
O

R
-0

00
2

R
ev

ision
0.7.1

ID Requirement Text Requirement Implementation Requirement Verification

OLD-
1

The CORDET Framework shall
provide an OutLoader
component as an extension of
the Base Component.

The OutLoader component is created by
function CrFwOutLoaderMake which creates it
as an extension of the Base State Machine.

OutLoader creation is verified in the test
cases in CrFwOutLoaderTestCase.h.

OLD-
3

The OutLoader component
shall offer a Load operation to
load an OutComponent
instance into an OutManager.

The Load operation is implemented by func-
tion CrFwOutLoaderLoad.

Function CrFwOutLoaderLoad is verified in
test case CrFwOutLoaderTestCase1.

OLD-
4

Execution of the Load

operation shall cause the Load
Procedure of figure E.8 to be
run.

The Load operation is implemented by func-
tion CrFwOutLoaderLoad.

The Load Procedure has one single branch
which is tested in CrFwOutLoaderTestCase1.

OMG-
1

The CORDET Framework shall
provide an OutManager
component as an extension of
the Base Component.

The OutManager component is created by
function CrFwOutManagerMake which creates
it as an extension of the Base State Machine.

OutLoader creation is verified in the test
cases in CrFwOutManagerTestCase.h.

OMG-
3

The OutManager component
shall offer a Load operation to
load an OutComponent
instance in the POCL.

The Load operation is implemented by func-
tion CrFwOutManagerLoad.

Function CrFwOutManagerLoad is verified in
test case CrFwOutManagerTestCase2.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
M
P
L
v
2
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

29

P
P

-S
P

-C
O

R
-0

00
2

R
ev

ision
0.7.1

ID Requirement Text Requirement Implementation Requirement Verification

OMG-
4

The Load operation shall run
the OutManager Load
Procedure of figure E.9.

The OutManager Load Procedure is imple-
mented by function CrFwOutManagerLoad.

The Load Procedure has two branches
both of which are verified in test case
CrFwOutManagerTestCase2. The ’POCL
Full’ branch is also verified in test
cases CrFwOutManagerTestCase3 and
CrFwOutManagerTestCase4.

ORG-
1

The CORDET Framework shall
provide an OutRegistry
component as an extension of
the Base Component.

The OutRegistry component is created by
function CrFwOutRegistryMake which cre-
ates it as an extension of the Base State Ma-
chine.

OutRegistry creation is verified in the test
cases in CrFwOutManagerTestCase.h.

ORG-
3

The OutRegistry shall offer a
StartTracking operation to
run the Registry Start Tracking
Procedure of figure E.11.

The StartTracking operation
is implemented in function
CrFwOutRegistryStartTracking.

The Registry Start Tracking Procedure has
two branches both of which are verified in test
case CrFwOutRegistryTestCase7.

ORG-
4

The OutRegistry shall offer an
Update operation to run the
Registry Update Procedure of
figure E.11.

The Update operation is implemented in
function CrFwOutRegistryStartTracking.

The Registry Update Procedure has two
branches both of which are verified in test
case CrFwOutRegistryTestCase7.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
M
P
L
v
2
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

30

P
P

-S
P

-C
O

R
-0

00
2

R
ev

ision
0.7.1

ID Requirement Text Requirement Implementation Requirement Verification

ORG-
5

The OutRegistry component
shall provide an API through
which the state of a command
or report in the repository
(PENDING, ABORTED, and
TERMINATED) can be
queried.

The query operation is implemented in func-
tion CrFwOutRegistryGetState.

The query function is verified in test
cases CrFwOutRegistryTestCase7 to
CrFwOutRegistryTestCase9. All possible
outcomes of the query function (PEND-
ING, NOT TRACKED, ABORTED and
TERMINATED) are verified.

ORG-
6

The OutRegistry component
shall provide an API through
which the enable state of a
service type, service sub-type
or discriminant value can be set
and read.

The set operation is implemented in func-
tion CrFwOutRegistrySetEnable. The
get operation is implemented in function
CrFwOutRegistryIsEnabled.

Functions CrFwOutRegistrySetEnable and
CrFwOutRegistryIsEnabled are verified in
test cases CrFwOutRegistryTestCase3 to
CrFwOutRegistryTestCase6.

ORG-
7

The OutRegistry component
shall provide an API through
which the enable state of a
specific out-going command or
report can be determined in
accordance with the logic of the
Enable State Determination
Procedure of figure E.12.

The logic to determine the enable state of
an OutComponent is implemented in function
CrFwOutRegistryIsEnabled.

The behaviour of the Enable State Determi-
nation Procedure e is verified in table D.10.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
M
P
L
v
2
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

31

P
P

-S
P

-C
O

R
-0

00
2

R
ev

ision
0.7.1

ID Requirement Text Requirement Implementation Requirement Verification

ORG-
8

The OutRegistry shall use the
command/report identifier
attribute as the key to store
and make available information
about commands and reports.

The argument of function
CrFwOutRegistryGetState is the com-
mand or report identifier.

The query function is verified in test
cases CrFwOutRegistryTestCase7 to
CrFwOutRegistryTestCase9.

IFT-
1

The InFactory component shall
encapsulate the instance
creation process for
InCommand and InReport
components.

Instances of InCommand are created by
function CrFwInFactoryMakeInCmd. In-
stances of InReport are created by function
CrFwInFactoryMakeInRep.

Function CrFwInFactoryMakeInCmd is veri-
fied in test case CrFwInCmdTestCase1. Func-
tion CrFwInFactoryMakeInRep is verified in
test case CrFwInRepTestCase1.

IFT-
2

The Make operation of the
InFactory component shall take
as arguments the service type,
command or report sub-type
and discriminant value of the
command or report to be
encapsulated by the
InCommand or InReport.

Instances of InCommand are created by
function CrFwInFactoryMakeInCmd. In-
stances of InReport are created by function
CrFwInFactoryMakeInRep.

Function CrFwInFactoryMakeInCmd is veri-
fied in test case CrFwInCmdTestCase1. Func-
tion CrFwInFactoryMakeInRep is verified in
test case CrFwInRepTestCase1.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
M
P
L
v
2
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

32

P
P

-S
P

-C
O

R
-0

00
2

R
ev

ision
0.7.1

ID Requirement Text Requirement Implementation Requirement Verification

IFT-
3

The InCommands or InReports
returned by the Make operation
of the OutFactory shall have
their service type,
command/report sub-type, and
discriminant attribute set in
accordance with the value of
the arguments of the Make
operation.

Instances of InCommand are created by
function CrFwInFactoryMakeInCmd. In-
stances of InReport are created by function
CrFwInFactoryMakeInRep.

The correctness of the type, sub-type and dis-
criminant of a newly created InCommand is
verified in test case CrFwInCmdTestCase1.
The correctness of the type, sub-type and dis-
criminant of a newly created InReport is ver-
ified in test case CrFwInRepTestCase1.

ILD-
1

The CORDET Framework shall
provide an InLoader component
as an extension of the Base
Component.

The InLoader component is created by func-
tion CrFwInLoaderMake which creates it as
an extension of the Base State Machine.

InLoader creation is verified in the test cases
in CrFwInLoaderTestCase.h.

ILD-
3

The InLoader component shall
offer a Load operation to load a
command or report in an
InManager.

The Load operation is implemented by func-
tion CrFwInLoaderLoad.

Function CrFwInLoaderLoad is verified
in test cases CrFwInLoaderTestCase3 to
CrFwInLoaderTestCase11.

ILD-
4

The Load operation shall run
the InLoader Execution
Procedure of figure E.13.

The InLoader Execution Procedure is imple-
mented by function InLoaderExecAction.

The behaviour of the InLoader Execution
Procedure is verified in table D.11. This
procedure uses the InLoader Load Com-
mand/Report Procedure which is verified in
table D.12.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
M
P
L
v
2
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

33

P
P

-S
P

-C
O

R
-0

00
2

R
ev

ision
0.7.1

ID Requirement Text Requirement Implementation Requirement Verification

ICM-
1

The CORDET Framework shall
provide an InCommand
component as an extension of
the Base Component to
encapsulate an incoming
command in a provider
application.

The InCommand components are created
by function CrFwInFactoryMakeInCmd which
returns an instance taken from a pool
of pre-allocated components. The pre-
allocated components are created by func-
tion InFactoryInitAction as extensions of
a Base InCommand which is created by func-
tion CrFwInCmdMakeBase and which is itself
an extension of a Base State Machine.

The function CrFwInFactoryMakeInCmd is
verified in test case CrFwInCmdTestCase1.

ICM-
2

The behaviour of the
InCommand component in
state CONFIGURED shall be
as defined by the InCommand
State Machine of figure E.15.

The function CrFwInCmdMakeBase builds the
Base InCommand from which all InCom-
mands are derived by extending the Base
State Machine and then embedding within its
CONFIGURED state an InCommand State
Machine.

The behaviour of the InCommand State Ma-
chine is verified in table D.6.

ICM-
4

The InCommand component
shall provide visibility over the
value of all the attributes of the
command it encapsulates.

The InCommand attributes can be ac-
cessed through functions with names like:
CrFwInCmdGet*.

The CrFwInCmdGet* functions are verified in
test case CrFwInCmdTestCase1.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
M
P
L
v
2
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

34

P
P

-S
P

-C
O

R
-0

00
2

R
ev

ision
0.7.1

ID Requirement Text Requirement Implementation Requirement Verification

IRP-
1

The CORDET Framework shall
provide an InReport
component as an extension of
the Base Component to
encapsulate an incoming report
in a user application.

The InReport components are created by
function CrFwInFactoryMakeInRep which re-
turns an instance taken from a pool
of pre-allocated components. The pre-
allocated components are created by func-
tion InFactoryInitAction as extensions of
a Base InCommand which is created by func-
tion CrFwInRepMakeBase and which is itself
an extension of a Base State Machine.

The function CrFwInFactoryMakeInRep is
verified in test case CrFwInRepTestCase1.

IRP-
3

The InReport component shall
provide visibility over the value
of all the attributes of the
report it encapsulates.

The InReport attributes can be ac-
cessed through functions with names
like: CrFwInRepGet*.

The CrFwInRepGet* functions are verified in
test case CrFwInRepTestCase1.

IMG-
1

The CORDET Framework shall
provide an InManager
component as an extension of
the Base Component.

The InManager component is created by
function CrFwInManagerMake which creates it
as an extension of the Base State Machine.

InManager creation is verified in the test
cases in CrFwInManagerTestCase.h.

IMG-
3

The InManager component
shall offer a Load operation to
load an InCommand or
InReport instance in the
Pending Command/Report List
(PCRL).

The Load operation is implemented by func-
tion CrFwInManagerLoad.

Function CrFwInManagerLoad is verified in
test case CrFwInManagerTestCase2.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
M
P
L
v
2
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

35

P
P

-S
P

-C
O

R
-0

00
2

R
ev

ision
0.7.1

ID Requirement Text Requirement Implementation Requirement Verification

IMG-
4

The Load operation shall run
the InManager Load Procedure
of figure E.17.

The OutManager Load Procedure is imple-
mented by function CrFwOutManagerLoad.

The Load Procedure has two branches
both of which are verified in test case
CrFwInManagerTestCase2. The ’PCRL
Not Full’ branch is also verified in
test cases CrFwOutManagerTestCase3 to
CrFwOutManagerTestCase8.

IRG-
1

The CORDET Framework shall
provide an InRegistry
component as an extension of
the Base Component .

The InRegistry component is created by func-
tion CrFwInRegistryMake which creates it as
an extension of the Base State Machine.

InRegistry creation is verified in the test cases
in CrFwInRegistryTestCase.h.

IRG-
3

The InRegistry shall offer an
operation StartTracking to run
the Registry Start Tracking
Procedure of figure E.11.

The StartTracking operation is implemented
in function CrFwInRegistryStartTracking.

The Registry Start Tracking Procedure has
two branches both of which are verified in test
case CrFwInRegistryTestCase2.

IRG-
4

The InRegistry shall offer an
Update operation which runs
the Registry Update Procedure
of figure E.11.

The Update operation is implemented in
function CrFwInRegistryUpdateState.

The Registry Update Procedure has two
branches both of which are verified in test
case CrFwInRegistryTestCase2.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
M
P
L
v
2
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

36

P
P

-S
P

-C
O

R
-0

00
2

R
ev

ision
0.7.1

ID Requirement Text Requirement Implementation Requirement Verification

IRG-
5

The InRegistry component
shall provide an API through
which the state of a command
or report in the repository
(PENDING, ABORTED, and
TERMINATED) can be
queried.

The query operation is implemented in func-
tion CrFwInRegistryGetState.

The query function is verified in test case
CrFwOutRegistryTestCase2. All possible
outcomes of the query function (PENDING,
NOT TRACKED, ABORTED and TERMI-
NATED) are verified.

IRG-
6

The InRegistry shall use the
command/report identifier
attribute as the key to store
and make available information
about commands and reports.

The argument of function
CrFwInRegistryGetState is the command
or report identifier.

The query function is verified in test case
CrFwInRegistryTestCase2.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
M
P
L
v
2
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

37

PP-SP-COR-0002 Revision 0.7.1

B CORDET Framework Adaptation Points

The C2 Implementation implements the adaptation points of the CORDET
Framework. Table B.1 lists the adaptation points of the CORDET Framework
as they are defined in reference [4]. The requirement identifier (first column in
the table) is the same as used in reference [4].

For each adaptation point, the last column in the table either describes how the
adaptation point is implemented in the C2 Implementation or it explains why
it is not directly implemented. The latter is the case for the following kinds of
adaptation points:

• Adaptation points which are ”closed at framework level” and which are
therefore not present in the C2 Implementation. This is the case when
component B is derived (through the extension mechanism of the FW
Profile) from component A and component A has defined an adaptation
point which is inherited by component B but which component B closes
(i.e. the value of the adaptation point on component B is fixed and cannot
be modified by users of the framework). Thus, for instance, the Execution
Procedure is an adaptation point for the Base Component (BAS-6) but the
framework components which are derived from the Base Component have
a specific Execution Procedure which is not intended to be modified by
application developers and therefore ”close” the adaptation point BAS-6
defined on the Base Component.

• Adaptation points which have been mapped to other adaptation points
which are specific to the C2 Implementation. In these cases, the last
column in the table identifies the C2 Implementation adaptation point
(the full list of C2 Implementation Points is provided in appendix C).

• Adaptation points which are closed as a result of the design choices made
by the C2 Implementation. This is, for instance, the case for the adap-
tation points for the OutStreamRegistry. In the C2 Implementation, this
component has been merged with the OutStream component and hence
its adaptation points have been merged with those of the OutStream.

The definitions of the CORDET adaptation points often refer to state machine
or procedure diagrams. A complete list of the diagrams of the state machines
and procedures which define the behaviour of the CORDET components can be
found in section E.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the MPLv2 of the

C2 Implementation of the CORDET Framework.

38

P
P

-S
P

-C
O

R
-0

00
2

R
ev

ision
0.7.1

Table B.1: CORDET Adaptation Points

AP ID Adaptation Point Default Value Implementation

BAS-1 Initialization Check in
Initialization Procedure of
Base Component

Always returns: ’check success-
ful’

The Base Component is not available for direct use by
application developers. This Adaptation Point is there-
fore not directly supported by the C2 Implementation
but, where required, is supported by components which
are derived from the Base Component.

BAS-2 Initialization Action in
Initialization Procedure of
Base Component

Do nothing and return: ’action
successful’

The Base Component is not available for direct use by
application developers. This Adaptation Point is there-
fore not directly supported by the C2 Implementation
but, where required, is supported by components which
are derived from the Base Component.

BAS-3 Configuration Check in Re-
set Procedure of Base Com-
ponent

Always returns: ’check success-
ful’

The Base Component is not available for direct use by
application developers. This Adaptation Point is there-
fore not directly supported by the C2 Implementation
but, where required, is supported by components which
are derived from the Base Component.

BAS-4 Configuration Action in Re-
set Procedure of Base Com-
ponent

Do nothing and return: ’action
successful’

The Base Component is not available for direct use by
application developers. This Adaptation Point is there-
fore not directly supported by the C2 Implementation
but, where required, is supported by components which
are derived from the Base Component.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
M
P
L
v
2
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

39

P
P

-S
P

-C
O

R
-0

00
2

R
ev

ision
0.7.1

AP ID Adaptation Point Default Value Implementation

BAS-5 Shutdown Action of Base
Component

Do nothing The Base Component is not available for direct use by
application developers. This Adaptation Point is there-
fore not directly supported by the C2 Implementation
but, where required, is supported by components which
are derived from the Base Component.

BAS-6 Execution Procedure of
Base Component

Do the same dummy action (re-
turn without doing anything)
whenever the procedure is exe-
cuted

The Base Component is not available for direct use by
application developers. This Adaptation Point is there-
fore not directly supported by the C2 Implementation
but, where required, is supported by components which
are derived from the Base Component.

AST-1 Application Start-Up Pro-
cedure

No default provided at frame-
work level

Implementation of CrFwAppStartUpProc.h. Only a
test stub is provided as default at framework level.

AST-2 Application Reset Proce-
dure

No default provided at frame-
work level

Implementation of CrFwAppResetProc.h. Only a test
stub is provided as default at framework level.

AST-3 Application Shutdown Pro-
cedure

No default provided at frame-
work level

Implementation of CrFwAppShutdownProc.h. Only a
test stub is provided as default at framework level.

AST-4 State Machine Embedded
in state START UP of Ap-
plication State Machine

No state machine embedded in
state START UP

#DEFINE constant in CrFwAppSmUserPar.h

AST-5 State Machine Embedded
in state NORMAL of Appli-
cation State Machine

No state machine embedded in
state NORMAL

#DEFINE constant in CrFwAppSmUserPar.h

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
M
P
L
v
2
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

40

P
P

-S
P

-C
O

R
-0

00
2

R
ev

ision
0.7.1

AP ID Adaptation Point Default Value Implementation

AST-6 State Machine Embedded
in state RESET of Applica-
tion State Machine

No state machine embedded in
state RESET

#DEFINE constant in CrFwAppSmUserPar.h

AST-7 State Machine Embedded
in state SHUTDOWN of
Application State Machine

No state machine embedded in
state SHUTDOWN

#DEFINE constant in CrFwAppSmUserPar.h

FAC-1 Make Operation to dynam-
ically instantiate a compo-
nent

No default provided at frame-
work level

The only components which can be instan-
tiated dynamically are report and command
components. Their make operations are im-
plemented in full (see CrFwInFactoryMake* and
CrFwOutFactoryMakeOutCmp functions). This adapta-
tion point is therefore closed by the C2 Implementation.

FAC-2 Release Operation to dy-
namically release a compo-
nent

No default provided at frame-
work level

The only components which can be released
dynamically are report and command compo-
nents. Their release operations are imple-
mented in full (see CrFwInFactoryRelease* and
CrFwOutFactoryReleaseOutCmp functions). This
adaptation point is therefore closed by the C2
Implementation.

OST-1 Packet Queue Size for Out-
Stream

No value defined at framework
level

#DEFINE constant (one for each OutStream in the ap-
plication) in CrFwOutStreamUserPar.h

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
M
P
L
v
2
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

41

P
P

-S
P

-C
O

R
-0

00
2

R
ev

ision
0.7.1

AP ID Adaptation Point Default Value Implementation

OST-2 Initialization Check in
Initialization Procedure of
OutStream

Returns ’check successful’ if the
size of the Packet Queue has
been set to a positive integer

Function pointers (one for each OutStream in the ap-
plication) in CrFwOutStreamUserPar.h. Default imple-
mentation is provided in CrFwOutStream.h..

OST-3 Initialization Action in
Initialization Procedure of
OutStream

Allocate resources for Packet
Queue and return ’Action Suc-
cessful’ iff the allocation succeeds

Function pointers (one for each OutStream in the ap-
plication) in CrFwOutStreamUserPar.h. Default imple-
mentation is provided in CrFwOutStream.h..

OST-4 Configuration Check in
Initialization Procedure of
OutStream

Same value as in Base Compo-
nent

Function pointers (one for each OutStream in the ap-
plication) in CrFwOutStreamUserPar.h. Default imple-
mentation is provided in CrFwOutStream.h..

OST-5 Configuration Action
in Reset Procedure of
OutStream

Reset the Packet Queue and re-
turn ’Action Successful’

Function pointers (one for each OutStream in the ap-
plication) in CrFwOutStreamUserPar.h. Default imple-
mentation is provided in CrFwOutStream.h..

OST-6 Shutdown Action of Out-
Stream

Reset the Packet Queue Function pointers (one for each OutStream in the ap-
plication) in CrFwOutStreamUserPar.h. Default imple-
mentation is provided in CrFwOutStream.h..

OST-7 Execution Procedure of
OutStream (closes BAS-6)

Same value as in Base Compo-
nent

This Adaptation Point is closed at framework level.

OST-8 Packet Hand-Over Opera-
tion of OutStream

No value defined at framework
level

Function pointers (one for each OutStream in the appli-
cation) in CrFwOutStreamUserPar.h. Only a test stub
is provided as default at framework level.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
M
P
L
v
2
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

42

P
P

-S
P

-C
O

R
-0

00
2

R
ev

ision
0.7.1

AP ID Adaptation Point Default Value Implementation

OST-9 Operation to set Sequence
Counter in Outgoing Pack-
ets

No value defined at framework
level

Implemented by Adaptation Point C2-PCK-1.

OST-12 Operation to Report Packet
Queue Full

Generate OUT-
STREAM PQ FULL Error
Report

Implemented by Adaptation Point C2-ERR-1.

IST-1 Size of the Packet Queue in
InStream

Default size is 1 #DEFINE constant (one for each InStream in the appli-
cation) in CrFwInStreamUserPar.h

IST-2 Initialization Check in Ini-
tialization Procedure of In-
Stream

Returns ’check successful’ if the
size of the Packet Queue has
been set to a positive integer

Function pointers (one for each InStream in the ap-
plication) in CrFwInStreamUserPar.h. Default imple-
mentation is provided in CrFwInStream.h.

IST-3 Initialization Action in Ini-
tialization Procedure of In-
Stream

Allocate resources for Packet
Queue and return ’Action Suc-
cessful’ iff the allocation succeeds

Function pointers (one for each InStream in the ap-
plication) in CrFwInStreamUserPar.h. Default imple-
mentation is provided in CrFwInStream.h.

IST-4 Configuration Action in Re-
set Procedure of InStream

Reset the Packet Queue and re-
turn ’Action Successful’

Function pointers (one for each InStream in the ap-
plication) in CrFwInStreamUserPar.h. Default imple-
mentation is provided in CrFwInStream.h.

IST-5 Shutdown Action of In-
Stream

Reset the Packet Queue Function pointers (one for each InStream in the ap-
plication) in CrFwInStreamUserPar.h. Default imple-
mentation is provided in CrFwInStream.h.

IST-6 Execution Procedure of In-
Stream (closes BAS-6)

Same value as in Base Compo-
nent

This Adaptation Point is closed at framework level.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
M
P
L
v
2
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

43

P
P

-S
P

-C
O

R
-0

00
2

R
ev

ision
0.7.1

AP ID Adaptation Point Default Value Implementation

IST-7 Operation to Get Packet
Source from Incoming
Packet

No value defined at framework
level

Implemented by Adaptation Point C2-PCK-1.

IST-8 Operation to Get Packet
Sequence Counter from In-
coming Packet

No value defined at framework
level

Implemented by Adaptation Point C2-PCK-1.

IST-9 Operation to Report Se-
quence Counter Error

Generate INSTREAM SC ERR
Error Report with expected and
actual sequence counter values

Implemented by Adaptation Point C2-ERR-1.

IST-10 Operation to Report Packet
Queue Full

Generate IN-
STREAM PQ FULL Error
Report

Implemented by Adaptation Point C2-ERR-1.

IST-11 Packet Collect Operation
for InStream

No default defined at framework
level

Function pointers (one for each InStream in the appli-
cation) in CrFwInStreamUserPar.h. Only a test stub
is provided as default at framework level.

IST-12 Packet Available Check
Operation for InStream

No default defined at framework
level

Function pointers (one for each InStream in the appli-
cation) in CrFwInStreamUserPar.h. Only a test stub
is provided as default at framework level.

OSR-1 Initialization Check in
Initialization Procedure of
OutStreamRegistry

Same value as in Base Compo-
nent

In the C2 Implementation, the OutStreamRegistry is
not implemented as a separate component (it is merged
with the OutStream). This adaptation point is closed
in the C2 Implementation.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
M
P
L
v
2
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

44

P
P

-S
P

-C
O

R
-0

00
2

R
ev

ision
0.7.1

AP ID Adaptation Point Default Value Implementation

OSR-2 Initialization Action in
Initialization Procedure of
OutStreamRegistry

Same value as in Base Compo-
nent

In the C2 Implementation, the OutStreamRegistry is
not implemented as a separate component (it is merged
with the OutStream). This adaptation point is closed
in the C2 Implementation.

OSR-3 Configuration Check in
Reset Procedure of Out-
StreamRegistry

Returns ’check successful’ if the
information to set up the link
between the packet destinations
and the OutStreams is available.

In the C2 Implementation, the OutStreamRegistry is
not implemented as a separate component (it is merged
with the OutStream). This adaptation point is closed
in the C2 Implementation.

OSR-4 Configuration Action
in Reset Procedure of
OutStreamRegistry

Set up and configure the link
between the packet destinations
and the OutStreams.

In the C2 Implementation, the OutStreamRegistry is
not implemented as a separate component (it is merged
with the OutStream). This adaptation point is closed
in the C2 Implementation.

OSR-5 Shutdown Action of Out-
StreamRegistry (closes
BAS-5)

Same value as in Base Compo-
nent

In the C2 Implementation, the OutStreamRegistry is
not implemented as a separate component (it is merged
with the OutStream). This adaptation point is closed
in the C2 Implementation.

OSR-6 Execution Procedure of
OutStreamRegistry (closes
BAS-6)

Same value as in Base Compo-
nent

In the C2 Implementation, the OutStreamRegistry is
not implemented as a separate component (it is merged
with the OutStream). This adaptation point is closed
in the C2 Implementation.

OSR-7 Get OutStream Operation
of OutStreamRegistry

No default provided at frame-
work level

#DEFINE constants (one for each OutStream in the ap-
plication) in CrFwOutStreamUserPar.h define the des-
tination associated to each OutStream.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
M
P
L
v
2
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

45

P
P

-S
P

-C
O

R
-0

00
2

R
ev

ision
0.7.1

AP ID Adaptation Point Default Value Implementation

OCM-1 Initialization Check in
Initialization Procedure of
OutComponent

Same value as in Base Compo-
nent

OutComponents are provided by the OutFactory in the
CONFIGURED state and cannot therefore be initial-
ized and configured by the user. This adaptation point
is closed in the C2 Implementation.

OCM-2 Initialization Action in
Initialization Procedure of
OutComponent

Same value as in Base Compo-
nent

OutComponents are provided by the OutFactory in the
CONFIGURED state and cannot therefore be initial-
ized and configured by the user. This adaptation point
is closed in the C2 Implementation.

OCM-3 Configuration Check in Re-
set Procedure of OutCom-
ponent

Same value as in Base Compo-
nent

OutComponents are provided by the OutFactory in the
CONFIGURED state and cannot therefore be initial-
ized and configured by the user. This adaptation point
is closed in the C2 Implementation.

OCM-4 Configuration Action in Re-
set Procedure of OutCom-
ponent

Same value as in Base Compo-
nent

OutComponents are provided by the OutFactory in the
CONFIGURED state and cannot therefore be initial-
ized and configured by the user. This adaptation point
is closed in the C2 Implementation.

OCM-5 Shutdown Action in Base
Component of OutCompo-
nent

Same value as in Base Compo-
nent

OutComponents are provided by the OutFactory in the
CONFIGURED state and are not intended to be ever
shut down. This adaptation point is closed in the C2
Implementation.

OCM-6 Execution Procedure of
OutComponent (closes
BAS-6)

Same value as in Base Compo-
nent

The OutComponents are not intended to be ever exe-
cuted. This adaptation point is closed in the C2 Imple-
mentation.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
M
P
L
v
2
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

46

P
P

-S
P

-C
O

R
-0

00
2

R
ev

ision
0.7.1

AP ID Adaptation Point Default Value Implementation

OCM-7 Service Type Attribute of
OutComponent

No default provided at frame-
work level

This Adaptation Point is implemented by adaptation
point OFA-2.

OCM-8 Command/Report Sub-
Type Attribute of Out-
Component

No default provided at frame-
work level

This Adaptation Point is implemented by adaptation
point OFA-2.

OCM-9 Destination Attribute of
OutComponent

No default provided at frame-
work level

This Adaptation Point is implemented by adaptation
point OFA-2.

OCM-10 Acknowledge Level At-
tribute of OutComponent

Default value is: ’no acknowl-
edge required’ (only relevant for
OutCommands)

This Adaptation Point is implemented by adaptation
point C2-PCK-1.

OCM-11 Discriminant Attribute of
OutComponent

Default value is: ’no discrimi-
nant’

This Adaptation Point is implemented by adaptation
point OFA-2.

OCM-12 Parameter Attribute of
OutComponent

Default value is: ’no parameters’ This Adaptation Point is implemented indirectly: ap-
plications must extend OutComponents and must de-
fine the range of parameters for each OutComponent
and the operations to set their values.

OCM-13 Enable Check Operation of
OutComponent

Query the OutRegistry for the
enable status of the command
or report encapsulated in the
OutComponent and set value of
isEnable accordingly

#DEFINE constants (one for each kind of OutCompo-
nent in the application) in CrFwOutFactoryUserPar.h

define the pointer to the function implementing the op-
eration. A default is provided a framework level.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
M
P
L
v
2
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

47

P
P

-S
P

-C
O

R
-0

00
2

R
ev

ision
0.7.1

AP ID Adaptation Point Default Value Implementation

OCM-14 Ready Check Operation of
OutComponent

Set value of isReady flag to true #DEFINE constants (one for each kind of OutCompo-
nent in the application) in CrFwOutFactoryUserPar.h

define the pointer to the function implementing the op-
eration. A default is provided a framework level.

OCM-15 Repeat Check Operation of
OutComponent

Return “No Repeat” #DEFINE constants (one for each kind of OutCompo-
nent in the application) in CrFwOutFactoryUserPar.h

define the pointer to the function implementing the op-
eration. A default is provided a framework level.

OCM-16 Update Action of OutCom-
ponent

Set Time Stamp of OutCompo-
nent to current time

#DEFINE constants (one for each kind of OutCompo-
nent in the application) in CrFwOutFactoryUserPar.h

define the pointer to the function implementing the op-
eration. A default is provided a framework level.

OCM-17 Serialize Operation of Out-
Component

No default defined at framework
level

#DEFINE constants (one for each kind of OutCompo-
nent in the application) in CrFwOutFactoryUserPar.h

define the pointer to the function implementing the op-
eration. A default is provided a framework level.

OCM-18 Operation to Report In-
valid Destination of an Out-
Component

Generate SND-
PCKT INV DEST Error Report
with invalid destination as a
parameter

Implemented by Adaptation Point C2-ERR-1.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
M
P
L
v
2
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

48

P
P

-S
P

-C
O

R
-0

00
2

R
ev

ision
0.7.1

AP ID Adaptation Point Default Value Implementation

OLD-1 Initialization Check in
Initialization Procedure of
OutLoader

Returns ’check successful’ if the
size of the LOM (List of Out-
Managers) has been set to a pos-
itive integer value.

Function pointer in CrFwOutLoaderUserPar.h. De-
fault implementation which always returns ’check suc-
cessful’ is provided in CrFwOutLoader.h.

OLD-2 Initialization Action in
Initialization Procedure of
OutLoader

Allocate resources for LOM and
return ’Action Successful’ iff the
allocation succeeds

Function pointer in CrFwOutLoaderUserPar.h. De-
fault implementation which takes no action is provided
in CrFwOutLoader.h.

OLD-3 Configuration Check in Re-
set Procedure of OutLoader

Returns ’check successful’ iff all
the information is available to
update (or initialize) the value of
the LOM.

Function pointer in CrFwOutLoaderUserPar.h. De-
fault implementation which always returns ’check suc-
cessful’ is provided in CrFwOutLoader.h.

OLD-4 Configuration Action in Re-
set Procedure of OutLoader

Update (or initialize) the LOM
and return ’Action Successful’

Function pointer in CrFwOutLoaderUserPar.h. De-
fault implementation which takes no action is provided
in CrFwOutLoader.h.

OLD-5 Shutdown Action of Out-
Loader

Same as in Base Component. Function pointer in CrFwOutLoaderUserPar.h. De-
fault implementation which takes no action is provided
in CrFwOutLoader.h.

OLD-6 Execution Procedure of
OutLoader (closes BAS-6)

Same as in Base Component. This Adaptation Point is closed at framework level.

OLD-7 OutManager Selection Op-
eration

Select the first OutManager in
the LOM

Function pointer in CrFwOutLoaderUserPar.h. De-
fault implementation which always returns the
first OutManager in the LOM is provided in
CrFwOutLoader.h.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
M
P
L
v
2
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

49

P
P

-S
P

-C
O

R
-0

00
2

R
ev

ision
0.7.1

AP ID Adaptation Point Default Value Implementation

OLD-8 OutManager Activation
Operation

Do nothing Function pointer in CrFwOutLoaderUserPar.h. De-
fault implementation which takes no action is provided
in CrFwOutLoader.h.

OLD-9 Operation to set Set Time-
Stamp in Outgoing Packets

No value defined at framework
level

Implemented by Adaptation Point C2-PCK-1.

OMG-1 Size of POCL of OutMan-
ager

Default size is 1. #DEFINE constants (one for each OutManager) in
CrFwOutManagerUserPar.h

OMG-2 Initialization Check in
Initialization Procedure
of OutManager (closes
BAS-1)

Returns ’check successful’ if the
size of the POCL has been set to
a positive integer value.

This Adaptation Point is closed at framework level.

OMG-3 Initialization Action in
Initialization Procedure
of OutManager (closes
BAS-2)

Allocate resources for POCL and
return ’Action Successful’ iff the
allocation succeeds

This Adaptation Point is closed at framework level.

OMG-4 Configuration Check in Re-
set Procedure of OutMan-
ager (closes BAS-3)

Same as in Base Component This Adaptation Point is closed at framework level.

OMG-5 Configuration Action in Re-
set Procedure (closes BAS-
4)

Release all OutComponents in
the POCL; reset the POCL; re-
set the counter of successfully
loaded OutComponents; and re-
turn ’Action Successful’

This Adaptation Point is closed at framework level.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
M
P
L
v
2
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

50

P
P

-S
P

-C
O

R
-0

00
2

R
ev

ision
0.7.1

AP ID Adaptation Point Default Value Implementation

OMG-6 Shutdown Action in Base
Component of OutManager
(closes BAS-5)

Release all OutComponents in
the POCL; reset the POCL

This Adaptation Point is closed at framework level.

OMG-7 Execution Procedure in
Base Component of Out-
Manager (closes BAS-6)

Implemented as procedure of
Manager Execution Procedure

This Adaptation Point is closed at framework level.

OMG-8 Operation to Report POCL
of OutManager Full

Generate OUTMAN-
AGER POCL FULL Error
Report

Implemented by Adaptation Point C2-ERR-1.

ORG-1 Maximum Number of
Trackable Commands/Re-
ports for OutRegistry

Default value is 1. #DEFINE constant in CrFwOutRegistryUserPar.h de-
fines types, sub-types and range of discriminant values
supported by application.

ORG-2 Initialization Check in
Initialization Procedure
of OutRegistry (closes
BAS-1)

Returns ’check successful’ if the
maximum number of trackable
commands/reports has been set
to a positive integer value.

This Adaptation Point is closed at framework level.

ORG-3 Initialization Action in
Initialization Procedure
of OutRegistry (closes
BAS-2)

Allocate the resources for track-
ing the commands and reports
and returns: ’action successful’ if
the allocation succeeds or ’action
failed’ if the allocation fails.

This Adaptation Point is closed at framework level.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
M
P
L
v
2
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

51

P
P

-S
P

-C
O

R
-0

00
2

R
ev

ision
0.7.1

AP ID Adaptation Point Default Value Implementation

ORG-4 Configuration Check in Re-
set Procedure of OutReg-
istry (closes BAS-3)

Same value as in Base Compo-
nent

This Adaptation Point is closed at framework level.

ORG-5 Configuration Action in Re-
set Procedure of OutReg-
istry (closes BAS-4)

Set the enable state for all kinds
of commands and reports to:
’enabled’; clear all information
about tracked commands and re-
ports; and return: ’action suc-
cessful’.

This Adaptation Point is closed at framework level.

ORG-6 Shutdown Action of Out-
Registry (closes BAS-5)

Set the enable state for all kinds
of commands and reports to:
’enabled’; clear all information
about tracked commands and re-
ports.

This Adaptation Point is closed at framework level.

ORG-7 Execution Procedure of
OutRegistry (closes BAS-6)

Same value as in Base Compo-
nent

This Adaptation Point is closed at framework level.

ILD-1 Initialization Check in Ini-
tialization Procedure of In-
Loader (closes BAS-1)

Return “check successful’ iff the
sizes of the LIM is a positive in-
teger

This Adaptation Point is closed at framework level.

ILD-2 Initialization Action in Ini-
tialization Procedure of In-
Loader (closes BAS-2)

Allocate resources for the LIM
and return “Action Successful’ iff
the allocation succeeds

This Adaptation Point is closed at framework level.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
M
P
L
v
2
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

52

P
P

-S
P

-C
O

R
-0

00
2

R
ev

ision
0.7.1

AP ID Adaptation Point Default Value Implementation

ILD-3 Configuration Check in Re-
set Procedure of InLoader
(closes BAS-3)

Returns “check successful’ if: (a)
the information to update (or
initialize) the content of the LIM
is valid; and (b) the information
to re-route packets is valid.

This Adaptation Point is closed at framework level.

ILD-4 Configuration Action in Re-
set Procedure of InLoader
(closes BAS-4)

(a) update (or initialize) content
of LIM; and (b) update (or ini-
tialize) packet re-routing infor-
mation.

This Adaptation Point is closed at framework level.

ILD-5 Shutdown Action of In-
Loader (closes BAS-5)

Same as in Base Component. This Adaptation Point is closed at framework level.

ILD-6 Execution Procedure of In-
Loader (closes BAS-6)

Implemented as InLoader Execu-
tion Procedure.

This Adaptation Point is closed at framework level.

ILD-7 Size of List of InManagers
in InLoader

Default size is 2. The InLoader of the C2 Implementation does not ex-
plicitly define a List of InManager. This Adaptation
Point is subsumed in the Adaptation Point for the se-
lection of InManager (C2-ILD-TBD)

ILD-8 Content of List of InMan-
agers in InLoader

No default provided at frame-
work level.

The InLoader of the C2 Implementation does not ex-
plicitly define a List of InManager. It only defines the
function to return the InManager where the InReport
or InCommand must be loaded (see C2-ILD-2).

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
M
P
L
v
2
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

53

P
P

-S
P

-C
O

R
-0

00
2

R
ev

ision
0.7.1

AP ID Adaptation Point Default Value Implementation

ILD-9 Operation to Determine
Re-Routing Destination of
Packets

Re0routing destination is set to
the destination of the incoming
packet.

Function pointer in CrFwInLoaderUserPar.h. Default
implementation is provided CrFwInLoader.h.

ILD-10 Operation to Get Packet
Destination

No default provided at frame-
work level.

Implemented by Adaptation Point C2-PCK-1.

ILD-11 Operation to Check Packet
Destination Validity

Always returns “destination is
valid’.

The check of the destination validity is performed by
the function which returns the re-routing destination.

ILD-12 Operation to Report Packet
Destination Invalid

Generate error report IN-
LOADER INV DEST with
the destination identifier as a
parameter

Implemented by Adaptation Point C2-ERR-1.

ILD-13 Operation to Get Packet
Type

No default provided at frame-
work level

Implemented by Adaptation Point C2-PCK-1.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
M
P
L
v
2
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

54

P
P

-S
P

-C
O

R
-0

00
2

R
ev

ision
0.7.1

AP ID Adaptation Point Default Value Implementation

ILD-14 Operation to Report Ac-
ceptance Failure

For InCommands: generate
command acknowledge report
CMD ACK ACC FAIL with
command’s identifier and with
identifier of reason of failure
as parameters.. For InRe-
ports: generate error report
INLOADER ACC FAIL with
report’s identifier and with
identifier of reason of acceptance
failure as parameters.

Implemented by Adaptation Point C2-ACK-1.

ILD-15 Operation to Report Ac-
ceptance Success

Generate command acknowledge
report CMD ACK ACC SUCC
with command’s identifier as pa-
rameter.

Implemented by Adaptation Point C2-ACK-1.

ILD-16 Operation to Deserialize
Packet

No default provided at frame-
work level.

Packets are not deserialized in the C2 Implementation.
Instead, the packet itself is attached to the component
encapsulating the incoming report or command. This
adaptation point is closed in the C2 Implementation.

ILD-17 Operation to Select In-
Manager where Incoming
Report or Command is
Loaded

For InCommands, select first In-
Manager in LIM; for InReport,
select second InManager in LIM.

Function pointer in CrFwInLoaderUserPar.h. Default
implementation is provided CrFwInLoader.h.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
M
P
L
v
2
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

55

P
P

-S
P

-C
O

R
-0

00
2

R
ev

ision
0.7.1

AP ID Adaptation Point Default Value Implementation

ILD-18 Operation to Check Packet
Type Validity

No default provided at frame-
work level

This check is implemented in function CrFwInFacto-
ryMakeInCmd for incoming command and in function
CrFwInFactoryMakeInRep for incoming report. These
functions check that the type is supported by the ap-
plication.

ICM-1 Initialization Check in Ini-
tialization Procedure of In-
Command

Returns “check successful’ if in-
formation for initializing InCom-
mand using data in incoming
packet is valid

This Adaptation Point is closed in the C2 Implementa-
tion because InCommands are provided by the InFac-
tory in the CONFIGURED state (but a validity check
is provided in C2-ICM-1 to implement the acceptance
check).

ICM-2 Initialization Action in Ini-
tialization Procedure of In-
Command

Use information in incoming
packet to initialize InCommand
and return “action successful’

This Adaptation Point is closed in the C2 Implementa-
tion because InCommands are provided by the InFac-
tory in the CONFIGURED state (but a validity check
is provided in C2-ICM-1 to implement the acceptance
check).

ICM-3 Configuration Check in Re-
set Procedure of InCom-
mand

Returns “check successful’ if in-
formation for configuring In-
Command using data in incom-
ing packet is valid

This Adaptation Point is closed in the C2 Implementa-
tion because InCommands are provided by the InFac-
tory in the CONFIGURED state (but a validity check
is provided in C2-ICM-1 to implement the acceptance
check).

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
M
P
L
v
2
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

56

P
P

-S
P

-C
O

R
-0

00
2

R
ev

ision
0.7.1

AP ID Adaptation Point Default Value Implementation

ICM-4 Configuration Action in Re-
set Procedure of InCom-
mand

Use information in incoming
packet to configure InCommand
and return “action successful’

This Adaptation Point is closed in the C2 Implementa-
tion because InCommands are provided by the InFac-
tory in the CONFIGURED state (but a validity check
is provided in C2-ICM-1 to implement the acceptance
check).

ICM-5 Shutdown Action of In-
Command (closes BAS-5)

Same value as in Base Compo-
nent

This Adaptation Point is closed at framework level.

ICM-6 Execution Procedure of In-
Command (closes BAS-6)

Same value as in Base Compo-
nent

This Adaptation Point is closed at framework level.

ICM-7 Ready Check of InCom-
mand

Return “command is ready’ Function pointer in CrFwInFactoryUserPar.h.
Default implementation is provided by function
CrFwSmCheckAlwaysTrue.

ICM-8 Start Action of InCom-
mand

Set action outcome to “success’ Function pointer in CrFwInFactoryUserPar.h.
Default implementation is provided by function
CrFwSmEmptyAction.

ICM-9 Progress Action of InCom-
mand

Set action outcome to “com-
pleted’

Function pointer in CrFwInFactoryUserPar.h.
Default implementation is provided by function
CrFwSmEmptyAction.

ICM-10 Termination Action of In-
Command

Set action outcome to “success’ Function pointer in CrFwInFactoryUserPar.h.
Default implementation is provided by function
CrFwSmEmptyAction.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
M
P
L
v
2
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

57

P
P

-S
P

-C
O

R
-0

00
2

R
ev

ision
0.7.1

AP ID Adaptation Point Default Value Implementation

ICM-11 Abort Action of InCom-
mand

Do nothing Function pointer in CrFwInFactoryUserPar.h.
Default implementation is provided by function
CrFwSmEmptyAction.

ICM-12 Operation to Report Start
Failed for InCommand

Generate command acknowledge
report CMD ACK STR FAIL
with command’s identifier and
with identifier of reason of failure
as parameters.

Implemented by Adaptation Point C2-ACK-1.

ICM-13 Operation to Report Start
Successful for InCommand

Generate command acknowledge
report CMD ACK STR SUCC
with command’s identifier as pa-
rameter.

Implemented by Adaptation Point C2-ACK-1.

ICM-14 Operation to Report
Progress Failed for InCom-
mand

Generate command acknowledge
report CMD ACK PRG FAIL
with command’s identifier,
progress step and with iden-
tifier of reason of failure as
parameters.

Implemented by Adaptation Point C2-ACK-1.

ICM-15 Operation to Report
Progress Successful for
InCommand

Generate command acknowledge
report CMD ACK PRG SUCC
with command’s identifier and
progress step as parameters.

Implemented by Adaptation Point C2-ACK-1.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
M
P
L
v
2
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

58

P
P

-S
P

-C
O

R
-0

00
2

R
ev

ision
0.7.1

AP ID Adaptation Point Default Value Implementation

ICM-16 Operation to Report Ter-
mination Failed for InCom-
mand

Generate command acknowledge
report CMD ACK TRM FAIL
with command’s identifier and
with identifier of reason of failure
as parameters.

Implemented by Adaptation Point C2-ACK-1.

ICM-17 Operation to Report Re-
port Termination Success-
ful for InCommand

Generate command acknowledge
report CMD ACK TRM FAIL
with command’s identifier as
parameter.

Implemented by Adaptation Point C2-ACK-1.

ICM-18 Service Type Attribute of
InCommand

No default provided at frame-
work level

Implemented by Adaptation Point C2-IFA-4.

ICM-19 Command Sub-Type At-
tribute of InCommand

No default provided at frame-
work level

Implemented by Adaptation Point C2-IFA-4.

ICM-20 Discriminant Attribute of
InCommand

Default value is: “no discrimi-
nant’

Implemented by Adaptation Point C2-IFA-4.

ICM-21 Parameter Attributes of In-
Command

Default value is: “no parameters’ This Adaptation Point is implemented indirectly: ap-
plications must extend InCommands and must define
the range of parameters for each kind of InCommand
and the operations to get their values.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
M
P
L
v
2
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

59

P
P

-S
P

-C
O

R
-0

00
2

R
ev

ision
0.7.1

AP ID Adaptation Point Default Value Implementation

IRP-1 Initialization Check in Ini-
tialization Procedure of In-
Report

Returns “check successful’ if in-
formation for initializing InRe-
port using data in incoming
packet is valid

This Adaptation Point is closed by the C2 Implemen-
tation because InReports are provided by the InFac-
tory in the CONFIGURED state (but a validity check
is provided in C2-ICM-1 to implement the acceptance
check).

IRP-2 Initialization Action in Ini-
tialization Procedure of In-
Report

Use information in incoming
packet to initialize InReport and
return “action successful’

This Adaptation Point is closed by the C2 Implemen-
tation because InReports are provided by the InFac-
tory in the CONFIGURED state (but a validity check
is provided in C2-ICM-1 to implement the acceptance
check).

IRP-3 Configuration Check in Re-
set Procedure of InReport

Returns “check successful’ if in-
formation for configuring InRe-
port using data in incoming
packet is valid

This Adaptation Point is closed by the C2 Implemen-
tation because InReports are provided by the InFac-
tory in the CONFIGURED state (but a validity check
is provided in C2-ICM-1 to implement the acceptance
check).

IRP-4 Configuration Action in Re-
set Procedure of InReport

Use information in incoming
packet to configure InReport and
return “action successful’

This Adaptation Point is closed by the C2 Implemen-
tation because InReports are provided by the InFac-
tory in the CONFIGURED state (but a validity check
is provided in C2-ICM-1 to implement the acceptance
check).

IRP-5 Shutdown Action of InRe-
port (closes BAS-5)

Same value as in Base Compo-
nent

This Adaptation Point is closed at framework level.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
M
P
L
v
2
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

60

P
P

-S
P

-C
O

R
-0

00
2

R
ev

ision
0.7.1

AP ID Adaptation Point Default Value Implementation

IRP-6 Execution Procedure of In-
Report (closes BAS-6)

Same value as in Base Compo-
nent

This Adaptation Point is closed at framework level.

IRP-7 Update Action of InReport Do nothing Function pointer in CrFwInFactoryUserPar.h. De-
fault implementation is provided at framework level.

IRP-8 Service Type Attribute of
InReport

No default provided at frame-
work level

Implemented by Adaptation Point C2-IFA-3.

IRP-9 Sub-Type Attribute of In-
Report

No default provided at frame-
work level

Implemented by Adaptation Point C2-IFA-3.

IRP-10 Discriminant Attribute of
InReport

Default value is: “no discrimi-
nant’

Implemented by Adaptation Point C2-IFA-3.

IRP-11 Parameter Attribute of In-
Report

Default value is: “no parameters’ This Adaptation Point is implemented indirectly: ap-
plications must extend InCommands and must define
the range of parameters for each kind of InCommand
and the operations to get their values.

IMG-1 Size of PCRL of InManager Default size is 1. #DEFINE constants (one for each InManager) in
CrFwInManagerUserPar.h

IMG-2 Initialization Check in Ini-
tialization Procedure of In-
Manager (closes BAS-1)

Returns “check successful’ if the
size of the PCRL has been set to
a positive integer value.

This Adaptation Point is closed at framework level.

IMG-3 Initialization Action in Ini-
tialization Procedure of In-
Manager (closes BAS-2)

Allocate resources for PCRL and
return “Action Successful’ iff the
allocation succeeds

This Adaptation Point is closed at framework level.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
M
P
L
v
2
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

61

P
P

-S
P

-C
O

R
-0

00
2

R
ev

ision
0.7.1

AP ID Adaptation Point Default Value Implementation

IMG-4 Configuration Check in Re-
set Procedure of InManager
(closes BAS-3)

Same as in Base Component This Adaptation Point is closed at framework level.

IMG-5 Configuration Action in Re-
set Procedure of InManager
(closes BAS-4)

Release all InCommands and In-
Reports in the PCRL; reset the
counter of successfully loaded In-
Commands and InReports; reset
the PCRL; and return “Action
Successful’

This Adaptation Point is closed at framework level.

IMG-6 Shutdown Action of InMan-
ager (closes BAS-5)

Release all InCommands and In-
Reports in the PCRL; reset the
PCRL;

This Adaptation Point is closed at framework level.

IMG-7 Execution Procedure of In-
Manager (closes BAS-6)

Implemented as InManager Exe-
cution Procedure.

This Adaptation Point is closed at framework level.

IMG-8 Operation to Report PCRL
of InManager Full

Generate INMAN-
AGER PCRL FULL Error
Report

Implemented by Adaptation Point C2-ERR-1.

IRG-1 Maximum Number of
Trackable InCommand-
s/InReports in InRegistry

Default value is 1. #DEFINE constant in CrFwInRegistryUserPar.h

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
M
P
L
v
2
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

62

P
P

-S
P

-C
O

R
-0

00
2

R
ev

ision
0.7.1

AP ID Adaptation Point Default Value Implementation

IRG-2 Initialization Check in Ini-
tialization Procedure of In-
Registry (closes BAS-1)

Returns “check successful’ if the
maximum number of trackable
InCommands/InReports has
been set to a positive integer
value.

This Adaptation Point is closed at framework level.

IRG-3 Initialization Action in Ini-
tialization Procedure of In-
Registry (closes BAS-2)

Allocate the resources for track-
ing the commands and reports
and returns: “action successful’
if the allocation succeeds or “ac-
tion failed’ if the allocation fails.

This Adaptation Point is closed at framework level.

IRG-4 Configuration Check in Re-
set Procedure of InRegistry
(closes BAS-3)

Same value as in Base Compo-
nent

This Adaptation Point is closed at framework level.

IRG-5 Configuration Action in Re-
set Procedure (closes BAS-
4)

Clear all information about
tracked InCommands and
InReports; return: “action
successful’.

This Adaptation Point is closed at framework level.

IRG-6 Shutdown Action of InReg-
istry (closes BAS-5)

Clear all information about
tracked InCommands and
InReports.

This Adaptation Point is closed at framework level.

IRG-7 Execution Procedure of In-
Registry (closes BAS-6)

Same value as in Base Compo-
nent

This Adaptation Point is closed at framework level.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
M
P
L
v
2
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

63

PP-SP-COR-0002 Revision 0.7.1

C C2 Adaptation Points

The C2 Implementation implements the adaptation points of the CORDET
Framework. Table B.1 lists the adaptation points of the CORDET Framework
as they are defined in reference [4] and, for each adaptation point, it describes
how the adaptation point is implemented in the C2 Implementation.

Besides the adaptation points defined by the CORDET Framework, the C2
Implementation also provides a number of additional adaptation points which
arise as a result of the design choices made for the C2 Implementation. These
adaptaton points are called C2 Adaptation Points and are listed in table C.1.
The last column in the table shows how each adaptation point is implemented
and which default value (if any) is offered for it by the C2 Implementation.

The definitions of the C2 adaptation points often refer to state machine or
procedure diagrams. A complete list of the diagrams of the state machines
and procedures which define the behaviour of the CORDET components can be
found in section E.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the MPLv2 of the

C2 Implementation of the CORDET Framework.

64

P
P

-S
P

-C
O

R
-0

00
2

R
ev

ision
0.7.1

Table C.1: C2 Adaptation Points

AP ID Adaptation Point Implementation

C2-CST-1 Identifier of Host Application #DEFINE constant in CrFwUserConstants.h

C2-CST-2 Range of Service Type, Sub-
Type and Discriminants for In-
Commands and InReports

#DEFINE constants in CrFwUserConstants.h

C2-AST-1 Application Start-Up Procedure Implementation of CrFwAppStartUpProc.h. Only a test stub is provided as default
at framework level.

C2-AST-2 Application Reset Procedure Implementation of CrFwAppResetProc.h. Only a test stub is provided as default at
framework level.

C2-AST-3 Application Shutdown Procedure Implementation of CrFwAppShutdownProc.h. Only a test stub is provided as default
at framework level.

C2-AST-4 State Machine Embedded in state
START UP of Application State
Machine

#DEFINE constant in CrFwAppSmUserPar.h

C2-AST-5 State Machine Embedded in state
NORMAL of Application State
Machine

#DEFINE constant in CrFwAppSmUserPar.h

C2-AST-6 State Machine Embedded in state
RESET of Application State Ma-
chine

#DEFINE constant in CrFwAppSmUserPar.h

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
M
P
L
v
2
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

65

P
P

-S
P

-C
O

R
-0

00
2

R
ev

ision
0.7.1

AP ID Adaptation Point Implementation

C2-AST-7 State Machine Embedded in state
SHUTDOWN of Application
State Machine

#DEFINE constant in CrFwAppSmUserPar.h

C2-PCK-1 Operations to Set and Get the
Values of Command and Report
Attributes in a Packet

Implementation of CrFwPckt.h. Only a test stub is provided as default at framework
level.

C2-ERR-1 Operations to Report Errors Val-
ues of Command and Report At-
tributes in a Packet

Implementation of CrFwRepErr.h. Only a test stub is provided as default at frame-
work level.

C2-OFA-1 OutFactory Capacity #DEFINE constant in CrFwOutFactoryUserPar.h defines maximum number of Out-
Components which can be allocated by the factory.

C2-OFA-2 OutComponent Kinds #DEFINE constants in CrFwOutFactoryUserPar.h define the kinds of OutComponents
supported by the application. An OutComponent kind is defined through its ser-
vice type, command or report sub-type, and discriminant value. For each supported
OutComponent kind, function pointers are defined implementing the OutComponent
checks and actions.

C2-IFA-1 InFactory Capacity for InReports #DEFINE constant in CrFwInFactoryUserPar.h defines maximum number of InRe-
ports which can be allocated by the factory.

C2-IFA-2 InFactory Capacity for InCom-
mands

#DEFINE constant in CrFwInFactoryUserPar.h defines maximum number of InCom-
mands which can be allocated by the factory.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
M
P
L
v
2
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

66

P
P

-S
P

-C
O

R
-0

00
2

R
ev

ision
0.7.1

AP ID Adaptation Point Implementation

C2-IFA-3 InReport Kinds #DEFINE constants in CrFwInFactoryUserPar.h define the kinds of InReports sup-
ported by the application. An InReport kind is defined through its service type,
command or report sub-type, and discriminant value. For each supported InReport
kind, function pointers are defined implementing the InReport checks and actions.

C2-IFA-4 InCommand Kinds #DEFINE constants in CrFwInFactoryUserPar.h define the kinds of InCommands sup-
ported by the application. An InCommand kind is defined through its service type,
command or report sub-type, and discriminant value. For each supported InCom-
mand kind, function pointers are defined implementing the InCommand checks and
actions.

C2-OST-1 Number of OutStreams in the Ap-
plication

#DEFINE constant in CrFwOutStreamUserPar.h

C2-OST-2 Packet Queue Size for OutStream #DEFINE constant (one for each OutStream in the application) in
CrFwOutStreamUserPar.h

C2-OST-3 Destination associated to Out-
Stream

#DEFINE constant (one for each OutStream in the application) in
CrFwOutStreamUserPar.h

C2-OST-4 Initialization Check in Initializa-
tion Procedure of OutStream

Function pointers (one for each OutStream in the application) in
CrFwOutStreamUserPar.h. Default implementation is provided in
CrFwOutStream.h..

C2-OST-5 Initialization Action in Initializa-
tion Procedure of OutStream

Function pointers (one for each OutStream in the application) in
CrFwOutStreamUserPar.h. Default implementation is provided in
CrFwOutStream.h..

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
M
P
L
v
2
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

67

P
P

-S
P

-C
O

R
-0

00
2

R
ev

ision
0.7.1

AP ID Adaptation Point Implementation

C2-OST-4 Configuration Check in Initializa-
tion Procedure of OutStream

Function pointers (one for each OutStream in the application) in
CrFwOutStreamUserPar.h. Default implementation is provided in
CrFwOutStream.h..

C2-OST-6 Configuration Action in Reset
Procedure of OutStream

Function pointers (one for each OutStream in the application) in
CrFwOutStreamUserPar.h. Default implementation is provided in
CrFwOutStream.h..

C2-OST-7 Shutdown Action of OutStream Function pointers (one for each OutStream in the application) in
CrFwOutStreamUserPar.h. Default implementation is provided in
CrFwOutStream.h..

C2-OST-8 Packet Hand-Over Operation of
OutStream

Function pointers (one for each OutStream in the application) in
CrFwOutStreamUserPar.h. Only a test stub is provided as default at frame-
work level.

C2-IST-1 Number of InStreams in the Ap-
plication

#DEFINE constant in CrFwInStreamUserPar.h

C2-IST-2 Size of the Packet Queue in In-
Stream

#DEFINE constant (one for each InStream in the application) in
CrFwInStreamUserPar.h

C2-IST-3 Source associated to InStream #DEFINE constant (one for each InStream in the application) in
CrFwInStreamUserPar.h

C2-IST-4 Initialization Check in Initializa-
tion Procedure of InStream

Function pointers (one for each InStream in the application) in
CrFwInStreamUserPar.h. Default implementation is provided in CrFwInStream.h.

C2-IST-5 Initialization Action in Initializa-
tion Procedure of InStream

Function pointers (one for each InStream in the application) in
CrFwInStreamUserPar.h. Default implementation is provided in CrFwInStream.h.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
M
P
L
v
2
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

68

P
P

-S
P

-C
O

R
-0

00
2

R
ev

ision
0.7.1

AP ID Adaptation Point Implementation

C2-IST-6 Configuration Action in Reset
Procedure of InStream

Function pointers (one for each InStream in the application) in
CrFwInStreamUserPar.h. Default implementation is provided in CrFwInStream.h.

C2-IST-7 Shutdown Action of InStream Function pointers (one for each InStream in the application) in
CrFwInStreamUserPar.h. Default implementation is provided in CrFwInStream.h.

C2-IST-8 Packet Collect Operation for In-
Stream

Function pointers (one for each InStream in the application) in
CrFwInStreamUserPar.h. Only a test stub is provided as default at framework level.

C2-IST-9 Packet Available Check Operation
for InStream

Function pointers (one for each InStream in the application) in
CrFwInStreamUserPar.h. Only a test stub is provided as default at framework level.

C2-OST-10 Get OutStream Operation of Out-
StreamRegistry

#DEFINE constants (one for each OutStream in the application) in
CrFwOutStreamUserPar.h define the destination associated to each OutStream.

C2-OCM-1 Enable Check Operation of Out-
Component

#DEFINE constants (one for each kind of OutComponent in the application) in
CrFwOutFactoryUserPar.h define the pointer to the function implementing the op-
eration. A default is provided a framework level.

C2-OCM-2 Ready Check Operation of Out-
Component

#DEFINE constants (one for each kind of OutComponent in the application) in
CrFwOutFactoryUserPar.h define the pointer to the function implementing the op-
eration. A default is provided a framework level.

C2-OCM-3 Repeat Check Operation of Out-
Component

#DEFINE constants (one for each kind of OutComponent in the application) in
CrFwOutFactoryUserPar.h define the pointer to the function implementing the op-
eration. A default is provided a framework level.

C2-OCM-4 Update Action of OutComponent #DEFINE constants (one for each kind of OutComponent in the application) in
CrFwOutFactoryUserPar.h define the pointer to the function implementing the op-
eration. A default is provided a framework level.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
M
P
L
v
2
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

69

P
P

-S
P

-C
O

R
-0

00
2

R
ev

ision
0.7.1

AP ID Adaptation Point Implementation

C2-OCM-5 Serialize Operation of OutCompo-
nent

#DEFINE constants (one for each kind of OutComponent in the application) in
CrFwOutFactoryUserPar.h define the pointer to the function implementing the op-
eration. A default is provided a framework level.

C2-OLD-1 Initialization Check in Initializa-
tion Procedure of OutLoader

Function pointer in CrFwOutLoaderUserPar.h. Default implementation which always
returns ’check successful’ is provided in CrFwOutLoader.h.

C2-OLD-2 Initialization Action in Initializa-
tion Procedure of OutLoader

Function pointer in CrFwOutLoaderUserPar.h. Default implementation which takes
no action is provided in CrFwOutLoader.h.

C2-OLD-3 Configuration Check in Reset Pro-
cedure of OutLoader

Function pointer in CrFwOutLoaderUserPar.h. Default implementation which always
returns ’check successful’ is provided in CrFwOutLoader.h.

C2-OLD-4 Configuration Action in Reset
Procedure of OutLoader

Function pointer in CrFwOutLoaderUserPar.h. Default implementation which takes
no action is provided in CrFwOutLoader.h.

C2-OLD-5 Shutdown Action of OutLoader Function pointer in CrFwOutLoaderUserPar.h. Default implementation which takes
no action is provided in CrFwOutLoader.h.

C2-OLD-6 OutManager Selection Operation Function pointer in CrFwOutLoaderUserPar.h. Default implementation which always
returns the first OutManager in the LOM is provided in CrFwOutLoader.h.

C2-OLD-7 OutManager Activation Opera-
tion

Function pointer in CrFwOutLoaderUserPar.h. Default implementation which takes
no action is provided in CrFwOutLoader.h.

C2-OMG-1 Number of OutManagers in Appli-
cation

#DEFINE constants in CrFwOutManagerUserPar.h

C2-OMG-2 Size of POCL of OutManager #DEFINE constants (one for each OutManager) in CrFwOutManagerUserPar.h

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
M
P
L
v
2
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

70

P
P

-S
P

-C
O

R
-0

00
2

R
ev

ision
0.7.1

AP ID Adaptation Point Implementation

C2-ORG-1 Maximum Number of Trackable
Commands/Reports for OutReg-
istry

#DEFINE constant in CrFwOutRegistryUserPar.h defines types, sub-types and range
of discriminant values supported by application.

C2-ORG-2 Number of Service Types/Sub-
Types supported by Application

#DEFINE constant in CrFwOutRegistryUserPar.h defines types, sub-types and range
of discriminant values supported by application.

C2-ORG-3 Range of Services supported by
Application

#DEFINE constant in CrFwOutRegistryUserPar.h defines types, sub-types and range
of discriminant values supported by application.

C2-PCK-1 Operations to Report the Out-
come of the Processing and Exe-
cution of an Incoming Command

Implementation of CrFwRepInCmdOutcome.h. Only a test stub is provided as default
at framework level.

C2-ILD-1 Operation to Determine Re-
Routing Destination of Packets

Function pointer in CrFwInLoaderUserPar.h. Default implementation is provided
CrFwInLoader.h.

C2-ILD-1 Operation to Select InManager
where Incoming Report or Com-
mand is Loaded

Function pointer in CrFwInLoaderUserPar.h. Default implementation is provided
CrFwInLoader.h.

C2-ICM-1 Validity Check for InCommand Function pointer in CrFwInFactoryUserPar.h. Default implementation is provided
by function CrFwPrCheckAlwaysTrue.

C2-ICM-2 Ready Check of InCommand Function pointer in CrFwInFactoryUserPar.h. Default implementation is provided
by function CrFwSmCheckAlwaysTrue.

C2-ICM-3 Start Action of InCommand Function pointer in CrFwInFactoryUserPar.h. Default implementation is provided
by function CrFwSmEmptyAction.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
M
P
L
v
2
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

71

P
P

-S
P

-C
O

R
-0

00
2

R
ev

ision
0.7.1

AP ID Adaptation Point Implementation

C2-ICM-4 Progress Action of InCommand Function pointer in CrFwInFactoryUserPar.h. Default implementation is provided
by function CrFwSmEmptyAction.

C2-ICM-5 Termination Action of InCom-
mand

Function pointer in CrFwInFactoryUserPar.h. Default implementation is provided
by function CrFwSmEmptyAction.

C2-ICM-6 Abort Action of InCommand Function pointer in CrFwInFactoryUserPar.h. Default implementation is provided
by function CrFwSmEmptyAction.

C2-IRP-1 Validity Check for InReport Function pointer in CrFwInFactoryUserPar.h. Default implementation is provided
at framework level.

C2-IRP-2 Update Action of InReport Function pointer in CrFwInFactoryUserPar.h. Default implementation is provided
at framework level.

C2-IMG-1 Number of InManagers in Appli-
cation

#DEFINE constants in CrFwInManagerUserPar.h

C2-IMG-2 Size of PCRL of InManager #DEFINE constants (one for each InManager) in CrFwInManagerUserPar.h

C2-IRG-1 Maximum Number of Trackable
InCommands/InReports in In-
Registry

#DEFINE constant in CrFwInRegistryUserPar.h

C2-TIM-1 Operations to Get the Current
Time

Implementation of CrFwTime.h. Only a test stub is provided as default at framework
level.

C2-TYP-1 Definition of Primitive Types Definition of typedef.values in CrFwUserConstants.h. Default values are pre-defined
in this header file.

C2-CST-1 Identifier of Host Application #DEFINE constant in CrFwUserConstants.h.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
M
P
L
v
2
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

72

PP-SP-COR-0002 Revision 0.7.1

D CORDET Framework Behaviour

The C2 Implementation implements the behaviour of the CORDET Frame-
work. The behaviour of the CORDET Framework is defined through a set of
state machines and procedures (see E for a full list of their diagrams). Thus,
the C2 Implementation implements the behaviour of the CORDET Framework
state machines and procedures. This section provides the verification evidence
which demonstrates correct implementation of the CORDET Framework state
machines and procedures.

D.1 Verification of State Machine Behaviour

Correct implementation of the state machine behaviour is verified at the level of
the C1 Implementation in reference [3]. At the level of the C2 Implementation
it is therefore only necessary to verify that the state machines are correctly
configured. This is done by performing tests which:

1. For every transition in the state machine, execute the state transition

2. For every transition originating in a proper state which has a guard, at-
tempt to execute the state transition with the guard evaluating to false

3. For every do action in the state machine, execute the state machine

Note that the first two bullets also verify execution of all entry, exit and tran-
sition actions in the state machine. Tables D.1 to D.6 provide this verification
evidence for each state machine defined in reference [4]. For each element in
the previous list to be verified, the tables give the name of the test case in the
Test Suite where that element is verified. Note that no attempt is made to list
all test cases which verify a given element; rather the ojective is to identify one
test case for each element to be verified.

Table D.1: Verification of Base State Machine

Element Test Case

Transition from Initial Pseudo-State to
CREATED

CrFwBaseCmpTestCase1

Transition from CREATED to
CREATED

CrFwInStreamTestCase5

Transition from CREATED to
INITIALIZED

CrFwBaseCmpTestCase1,
CrFwInStreamTestCase5

Transition from INITIALIZED to
INITIALIZED

CrFwInStreamTestCase5

Transition from INITIALIZED to
CONFIGURED

CrFwBaseCmpTestCase1,
CrFwInStreamTestCase5

Transition from CONFIGURED to
CONFIGURED

CrFwInStreamTestCase4

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the MPLv2 of the

C2 Implementation of the CORDET Framework.

73

PP-SP-COR-0002 Revision 0.7.1

Element Test Case

Transition from CONFIGURED to
Final Pseudo-State

CrFwInStreamTestCase6

Do Action in CONFIGURED CrFwInLoaderTestCase2 to
CrFwInLoaderTestCase11 ver-
ify that execution of InLoader
component in state CONFIG-
URED triggers execution of its
Execution Procedure

Table D.2: Verification of Application State Machine

Element Test Case

Transition from Initial Pseudo-State to
START-UP

CrFwAppSmTestCase1

Transition from START-UP to
NORMAL with transition guard true

CrFwAppSmTestCase1

Transition from START-UP to
NORMAL with transition guard false

CrFwAppSmTestCase1

Transition from NORMAL to RESET CrFwAppSmTestCase1

Transition from RESET to NORMAL
with transition guard true

CrFwAppSmTestCase1

Transition from RESET to NORMAL
with transition guard false

CrFwAppSmTestCase1

Transition from NORMAL to
SHUTDOWN

CrFwAppSmTestCase1

Transition from SHUTDOWN to
Final-Pseudo State with transition
guard true

CrFwAppSmTestCase1

Transition from SHUTDOWN to
Final-Pseudo State with transition
guard false

CrFwAppSmTestCase1

Table D.3: Verification of OutStream State Machine

Element Test Case

Transition from Initial Pseudo-State to
READY

CrFwOutStreamTestCase1

Transition from READY to Choice
Pseudo-State

CrFwOutStreamTestCase1

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the MPLv2 of the

C2 Implementation of the CORDET Framework.

74

PP-SP-COR-0002 Revision 0.7.1

Element Test Case

Transition from Choice Pseudo-State
to BUFFERING

CrFwOutStreamTestCase1

Transition from BUFFERING to
BUFFERING

CrFwOutStreamTestCase1

Transition from BUFFERING to
Choice Pseudo-State

CrFwOutStreamTestCase3

Transition from Choice Pseudo-State
to READY

CrFwOutStreamTestCase3

In Enqueue Action, Branch with PQ
not full

CrFwOutStreamTestCase1

In Enqueue Action, Branch with PQ
full

CrFwOutStreamTestCase1

In Send or Enqueue Action, Branch
with Packet Not Originating in
Application

CrFwOutStreamTestCase6

In Send or Enqueue Action, Branch
with Middleware Accepting Packet

CrFwOutStreamTestCase3

In Send or Enqueue Action, Branch
with Middleware Rejecting Packet

CrFwOutStreamTestCase3

In Send or Enqueue Action, Branch
with Legal Group

CrFwOutStreamTestCase3

In Send or Enqueue Action, Branch
with Illegal Group

CrFwOutStreamTestCase7

In Flush Packet Queue Action, Branch
with Packet Originating in Application

CrFwOutStreamTestCase3

In Flush Packet Queue Action, Branch
with Legal Packet Group

CrFwOutStreamTestCase3

In Flush Packet Queue Action, Branch
with Packet Not Originating in
Application

CrFwOutStreamTestCase6

In Flush Packet Queue Action, Branch
with Middleware Accepting Packet

CrFwOutStreamTestCase3

In Flush Packet Queue Action, Branch
with Middleware Rejecting Packet

CrFwOutStreamTestCase3

In Flush Packet Queue Action, Branch
with Legal Group

CrFwOutStreamTestCase3

In Flush Packet Queue Action, Branch
with Illegal Group

CrFwOutStreamTestCase7

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the MPLv2 of the

C2 Implementation of the CORDET Framework.

75

PP-SP-COR-0002 Revision 0.7.1

Table D.4: Verification of InStream State Machine

Element Test Case

Transition from Initial Pseudo-State to
WAITING

CrFwInStreamTestCase1,
CrFwInStreamTestCase4

Transition from Initial Pseudo-State to
PCKT AVAIL

CrFwInStreamTestCase6

Transition from PCKT AVAIL to
PCKT AVAIL through Choice
Pseudo-State

CrFwInStreamTestCase2

Transition from WAITING to
WAITING through Choice
Pseudo-State

CrFwInStreamTestCase2

Transition from PCKT AVAIL to
PCKT AVAIL through Self-Transition

CrFwInStreamTestCase3,
CrFwInStreamTestCase4

Transition from PCKT AVAIL to
WAITING

CrFwInStreamTestCase2

Transition from WAITING to
PCKT AVAIL

CrFwInStreamTestCase2,
CrFwInStreamTestCase3,
CrFwInStreamTestCase4

Table D.5: Verification of OutComponent State Machine

Element Test Case

Transition from Initial Pseudo-State to
LOADED

CrFwOutCmpTestCase2 to
CrFwOutCmpTestCase6

Transition from LOADED to
ABORTED

CrFwOutCmpTestCase2,
CrFwOutCmpTestCase6

Transition from LOADED to
PENDING

CrFwOutCmpTestCase3 to
CrFwOutCmpTestCase9

Transition from PENDING to
TERMINATED with guard true and a
valid OutStream (i.e. transition is
triggered by Repeat Check returning
’no repeat’)

CrFwOutCmpTestCase7

Transition from PENDING to
TERMINATED with guard true due
to an invalid OutStream (i.e.
transition is triggered by Send Packet
Procedure having set isRepeat to ’no
repeat’)

CrFwOutCmpTestCase8

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the MPLv2 of the

C2 Implementation of the CORDET Framework.

76

PP-SP-COR-0002 Revision 0.7.1

Element Test Case

Transition from PENDING to
TERMINATED with guard false

CrFwOutCmpTestCase7

Transition from PENDING to
ABORTED with guard true

CrFwOutCmpTestCase9

Transition from PENDING to
ABORTED with guard false

CrFwOutCmpTestCase7,
CrFwOutCmpTestCase8

Table D.6: Verification of InCommand State Machine

Element Test Case

Transition from Initial Pseudo-State to
ACCEPTED

CrFwOutCmpTestCase1 to
CrFwOutCmpTestCase3 and
CrFwOutCmpTestCase5 to
CrFwOutCmpTestCase11

Transition from ACCEPTED to
Choice Psedo-State with guard false

CrFwOutCmpTestCase2

Transition from ACCEPTED to
ABORTED

CrFwOutCmpTestCase3

Transition from ACCEPTED to
PROGRESS

CrFwOutCmpTestCase2

Transition from ACCEPTED to
PROGRESS

CrFwOutCmpTestCase2

Transition from PROGRESS to
ABORTED with guard false

CrFwOutCmpTestCase5

Transition from PROGRESS to
Choice Pseudo-State with guard false

CrFwOutCmpTestCase5,
CrFwOutCmpTestCase6

Transition from PROGRESS to
TERMINATED

CrFwOutCmpTestCase6

Direct Transition from PROGRESS to
ABORTED

CrFwOutCmpTestCase7

Transition from PROGRESS to
ABORTED via Choice Pseudo-State

CrFwOutCmpTestCase8

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the MPLv2 of the

C2 Implementation of the CORDET Framework.

77

PP-SP-COR-0002 Revision 0.7.1

D.2 Verification of Procedure Behaviour

Correct implementation of the procedure behaviour is verified at the level of the
C1 Implementation in reference [3]. At the level of the C2 Implementation it is
therefore only necessary to verify that the procedures are correctly configured.
This is done by performing tests which execute every control flow in the pro-
cedure and, for every control flow with a guard, execute the control flow both
when the guard is true and when it is false.

Tables D.1 to D.12 provide this verification evidence for each state machine
defined in reference [4]. For each element in the previous list to be verified, the
tables give the name of the test case in the Test Suite where that element is
verified. Note that no attempt is made to list all test cases which verify a given
element; rather the ojective is to identify one test case for each element to be
verified. For convenience, the diagram representing a procedure is shown next
to the table which verifies it.

Table D.7: Verification of Initialization Procedure

Element Test Case

Execution of procedure with Outcome equal
to Success

CrFwBaseCmpTestCase1

Execution of procedure with Outcome equal
to Failure

CrFwInStreamTestCase5

Table D.8: Verification of Reset Procedure

Element Test Case

Execution of procedure with Outcome

equal to Success
CrFwBaseCmpTestCase1

Execution of procedure with Outcome

equal to Failure
CrFwInStreamTestCase5

Table D.9: Verification of Packet Collect Procedure

Element Test Case

Execution of procedure with MW in
state WAITING (the procedure loop is
not entered)

CrFwInStreamTestCase2

Execution of procedure with Flag 1

equal to True; Packet Queue not full;
and MW in State PCKT AVAIL

CrFwInStreamTestCase2,
CrFwInStreamTestCase3

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the MPLv2 of the

C2 Implementation of the CORDET Framework.

78

PP-SP-COR-0002 Revision 0.7.1

Element Test Case

Execution of procedure with Flag 1

equal to True; Packet Queue not full;
and MW not in State PCKT AVAIL

CrFwInStreamTestCase2,
CrFwInStreamTestCase3

Execution of procedure branch with
Flag 1 equal to False

CrFwInStreamTestCase4

Execution of procedure branch with
Packet Queue Full

CrFwInStreamTestCase4

Execution of procedure branch with
Illegal Group

CrFwInStreamTestCase7

Table D.10: Verification of Enable State Determination Procedure

Element Test Case

Execution of procedure with Service
Type Disabled

CrFwOutRegistryTestCase3,
CrFwOutRegistryTestCase4

Execution of procedure with Service
Type Enabled

CrFwOutRegistryTestCase3,
CrFwOutRegistryTestCase4,
CrFwOutRegistryTestCase5

Execution of procedure with Service
Sub-Type Disabled

CrFwOutRegistryTestCase3,
CrFwOutRegistryTestCase4

Execution of procedure with Service
Sub-Type Enabled

CrFwOutRegistryTestCase3,
CrFwOutRegistryTestCase4,
CrFwOutRegistryTestCase5

Execution of procedure with
Out-Going Command or Report with
Discriminant

CrFwOutRegistryTestCase4,
CrFwOutRegistryTestCase5

Execution of procedure with
Out-Going Command or Report with
no Discriminant

CrFwOutRegistryTestCase3

Execution of procedure with
Discriminant Enabled

CrFwOutRegistryTestCase4,
CrFwOutRegistryTestCase5

Table D.11: Verification of InLoader Execution Procedure

Element Test Case

Execution of procedure with No
Packet Returned by InStream

CrFwInLoaderTestCase2

Execution of procedure with Packet
Returned by InStream

CrFwInLoaderTestCase3 to
CrFwInLoaderTestCase11

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the MPLv2 of the

C2 Implementation of the CORDET Framework.

79

PP-SP-COR-0002 Revision 0.7.1

Element Test Case

Execution of procedure with Packet
Destination Invalid

CrFwInLoaderTestCase3

Execution of procedure with Packet
Destination Valid and Packet
Destination not the Host Application

CrFwInLoaderTestCase4

Execution of procedure with Packet
Destination Valid and Packet
Destination is the Host Application

CrFwInLoaderTestCase5

Execution of procedure with Packet
Destination Valid and Packet
Destination is the Host Application

CrFwInLoaderTestCase5

Execution of procedure with Packet
Destination Valid and Packet
Destination is the Host Application

CrFwInLoaderTestCase5

Table D.12: Verification of InLoader Load Command/Report Procedure

Element Test Case

Execution of procedure with Packet
Type Invalid

CrFwInLoaderTestCase5

Execution of procedure with Packet
Type Valid

CrFwInLoaderTestCase6

Execution of procedure when Make
Operation Fails

CrFwInLoaderTestCase6

Execution of procedure when Make
Operation Succeeds

CrFwInLoaderTestCase7

Execution of procedure when
InCommand or InReport is in State
CONFIGURED

CrFwInLoaderTestCase8

Execution of procedure when
InCommand or InReport is not in
State CONFIGURED

CrFwInLoaderTestCase7

Execution of procedure when Load
Operation Fails

CrFwInLoaderTestCase8

Execution of procedure when Load
Operation Succeeds

CrFwInLoaderTestCase9

Execution of procedure when
Component Being Loaded is an
InCommand and No Acknowledgement
of Acceptance is Required

CrFwInLoaderTestCase10

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the MPLv2 of the

C2 Implementation of the CORDET Framework.

80

PP-SP-COR-0002 Revision 0.7.1

Element Test Case

Execution of procedure when
Component Being Loaded is an
InCommand and Acknowledgement of
Acceptance is Required

CrFwInLoaderTestCase11

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the MPLv2 of the

C2 Implementation of the CORDET Framework.

81

PP-SP-COR-0002 Revision 0.7.1

E State Machine and Procedure Diagrams

For convenience, this appendix shows all the state machine and procedure di-
agrams referred to in the test. The description of the state machine diagrams
can be found in references [4] and [5].

Fig. E.1: Base State Machine

Fig. E.2: Initialization and Reset Procedures

Fig. E.3: Application State Machine

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the MPLv2 of the

C2 Implementation of the CORDET Framework.

82

PP-SP-COR-0002 Revision 0.7.1

Fig. E.4: The OutStream State Machine

Fig. E.5: The InStream State Machine

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the MPLv2 of the

C2 Implementation of the CORDET Framework.

83

PP-SP-COR-0002 Revision 0.7.1

Fig. E.6: The Packet Collect Procedure

Fig. E.7: The OutComponent State Machine

Fig. E.8: The OutLoader Load Procedure

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the MPLv2 of the

C2 Implementation of the CORDET Framework.

84

PP-SP-COR-0002 Revision 0.7.1

Fig. E.9: The OutManager Load Procedure

Fig. E.10: The OutManager Execution Procedure

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the MPLv2 of the

C2 Implementation of the CORDET Framework.

85

PP-SP-COR-0002 Revision 0.7.1

Fig. E.11: The Registry Start Tracking and Registry Update Procedures

Fig. E.12: The Enable State Determination Procedure

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the MPLv2 of the

C2 Implementation of the CORDET Framework.

86

PP-SP-COR-0002 Revision 0.7.1

Fig. E.13: The InLoader Execution Procedure

Fig. E.14: The InLoader Load Command/Report Procedure

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the MPLv2 of the

C2 Implementation of the CORDET Framework.

87

PP-SP-COR-0002 Revision 0.7.1

Fig. E.15: The InCommand State Machine

Fig. E.16: The InReport Execution Procedure

Fig. E.17: The InManager Load Procedure

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the MPLv2 of the

C2 Implementation of the CORDET Framework.

88

PP-SP-COR-0002 Revision 0.7.1

Fig. E.18: The InManager Execution Procedure

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the MPLv2 of the

C2 Implementation of the CORDET Framework.

89

PP-SP-COR-0002 Revision 0.7.1

References

[1] Alessandro Pasetti, Vaclav Cechticky: The FW Profile. PP-DF-COR-00001,
Revision 1.3, P&P Software GmbH, Switzerland, 2013

[2] Alessandro Pasetti, Vaclav Cechticky: The Framework Profile - C1 Imple-
mentation User Manual. PP-UM-COR-00001, Revision 1.2.0, P&P Soft-
ware GmbH, Switzerland, 2013 Available from: www.pnp-software.com/

fwprofile

[3] Alessandro Pasetti, Vaclav Cechticky: The Framework Profile - C1 Im-
plementation User Requirements. PP-SP-COR-00001, Revision 1.2.0, P&P
Software GmbH, Switzerland, 2013 Available from: www.pnp-software.

com/fwprofile

[4] Alessandro Pasetti, Vaclav Cechticky: The CORDET Framework. PP-DF-
COR-00002, Revision 1.3.0, P&P Software GmbH, Switzerland, 2014

[5] Alessandro Pasetti, Vaclav Cechticky: The CORDET Framework - User
Manual. PP-UM-COR-00002, Revision 0.4.0, P&P Software GmbH, Switzer-
land, 2014

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the MPLv2 of the

C2 Implementation of the CORDET Framework.

90

www.pnp-software.com/fwprofile
www.pnp-software.com/fwprofile
www.pnp-software.com/fwprofile
www.pnp-software.com/fwprofile

	Introduction
	Intended Use of C1 Implementation
	Requirement Definition
	Requirement Justification
	Requirement Implementation
	Requirement Verification

	Functional Requirements
	CORDET Framework Requirements
	C2 Adaptation Points
	Component Instantiation
	Component Factories

	Non-Functional Requirements
	Coding Requirements
	Adaptation Mechanisms
	Resource Requirements
	Verification Requirements
	Dependency Requirements

	CORDET Framework Standard Requirements
	CORDET Framework Adaptation Points
	C2 Adaptation Points
	CORDET Framework Behaviour
	Verification of State Machine Behaviour
	Verification of Procedure Behaviour

	State Machine and Procedure Diagrams

