FLIGHT SOFTWARE DEVELOPMENT FOR THE CHEOPS INSTRUMENT WITH THE
CORDET FRAMEWORK

V.Cechticky', R. Ottensamer?, and A. Pasetti’

'P&P Software GmbH, High Tech Center, Tigerwilen, 8274, Switzerland
2Um'versity of Vienna, Tiirkenschanzstr. 17, Vienna, 1180, Austria
3P&P Software GmbH, High Tech Center, Tigerwilen, 8274, Switzerland

ABSTRACT

CHEOPS is an ESA S-class mission dedicated to the pre-
cise measurement of radii of already known exoplanets
using ultra-high precision photometry. The instrument
flight software controlling the instrument and handling
the science data is developed by the University of Vi-
enna using the CORDET Framework offered by P&P
Software GmbH. The CORDET Framework provides a
generic software infrastructure for PUS-based applica-
tions. This paper describes how the framework is used for
the CHEOPS application software to provide a consistent
solution for to the communication and control services,
event handling and FDIR procedures. This approach is
innovative in four respects: (a) it is a true third-party re-
use; (b) re-use is done at specification, validation and
code level; (c) the re-usable assets and their qualifica-
tion data package are entirely open-source; (d) re-use is
based on call-back with the application developer provid-
ing functions which are called by the reusable architec-
ture.

Key words: Reusability; CHEOPS; CORDET.

1. INTRODUCTION

The CHaracterizing ExOPlanet Satellite (CHEOPS)
spacecraft is a Swiss-led ESA mission. It is the first mis-
sion dedicated to determine the bulk density of already
known exoplanets. This is achieved by ultra-high preci-
sion photometry of the transit events to measure the ex-
oplanets’ radii and detect atmosphere. The derived bulk
density allows a first classification of the observed ex-
oplanets. Launch is expected at the end of 2017. The
CHEOPS spacecraft platform is developed by Airbus De-
fence and Space and the science payload instrument is
under the responsibility of the University of Bern.

The CHEOPS satellite carries one single instrument
which is a 32cm reflecting telescope designed to mini-
mize any stray-light. It is equipped with a frame-transfer
CCD operated at visual wavelengths. The instrument is

controlled by a dedicated computer (the Digital Process-
ing Unit or DPU). The DPU communicates with the cen-
tral on-board computer (OBC) via a MIL-1553 link and
it controls the front-end electronics (the Sensor Electron-
ics Module or SEM!) through a SpaceWire link (see Fig-
ure 1). The measured science data are processed in the
DPU with two main output data products, a compressed
science data stream for downlink to ground and precise
centroid measurements to support the fine guiding of the
spacecraft. The software running on the DPU (the Instru-
ment Flight Software or IFSW) has a layered structure as
shown in Figure 2. Its bottom layer is the boot software
which is provided by the DPU hardware supplier IWF of
Austria). The intermediate layer is the Instrument Basic
Software (IBSW) which provides: (a) the operating sys-
tem, (b) a middleware for accessing the communication
links to the SEM and to the OBC, and (c¢) the DPU hard-
ware management functions. The Instrument Application
Software or IASW is the top layer which implements the
high-level instrument control services and the data pro-
cessing tasks. The IBSW and the IASW are developed
by the University of Vienna.

The DPU hardware is based on an Aeroflex Gaisler
GR712RC microprocessor, which is a system-on-chip
ASIC providing two LEON3FT cores, SpaceWire and
MIL-1553 interfaces. The redundant DPU boards and the
boot software are developed by IWF Graz.

The IASW has two main tasks. The first one is to imple-
ment scientific algorithms for the processing of the raw
data from the instrument. On-board processing of raw
science data is essential to overcome bandwidth limita-
tions and to maximize the value of data which are sent to
the ground. The second task of the IASW relates to the
fact that both the DPU and the SEM act as PUS termi-
nals. Thus, if one counts the OBC, there are three PUS
terminals on the CHEOPS instrument and the IASW im-
plements the functions of:

e provider of PUS services to the ground

e provider of PUS services to the OBC

'The SEM is provided by DLR.

SEM reads

e——
TM/ TC via

detector

Control / Data via
SpaceWire

DPU

MIL-1553

Figure 1. CHEOPS shown with payload instrument, indicating the data flow between the instrument electrical units.

e user of PUS services provided by the SEM

e gateway for PUS-based traffic between the
OBC/Ground and the SEM

The PUS functionality of the IASW is therefore very
complex. Rather than implementing this functionality
from scratch, the University of Vienna decided to avail
itself of the CORDET Framework. The next section de-
scribes the CORDET Framework in general terms and
section 3 describes its application to the implementation
of the IASW.

Service-Aware Part

Instrument Flight SW (IFSW) ; : of . Sw
\‘ Application Software K

incoming Reports & Ij Basic Software _ Out-Going Reports &
Out-Going C = . :

Incoming Commands
Connection to SEM ‘_/' ‘ | _’

(SpW, PUS-Based) DPU Processor

Connection to OBC
(1553, PUS-Based)

Figure 2. Structure of DPU Software

2. THE CORDET FRAMEWORK

The CORDET Framework is a software framework
for service-oriented embedded applications. Its key
concepts were introduced in the ASSERT Project and
prototyped in the CORDET Project (ESA Contract
20463/06/NL/JD). The industrial-quality version of the
framework was developed by P&P Software GmbH. A
software framework is a repository of reusable and adapt-
able software components embedded within a pre-defined

architecture that is optimized for applications in a certain
domain (see Figure 3 and references [1] and [2]). The
framework components are reusable in the sense that they
encapsulate behaviour which is common to all applica-
tions within the frameworks domain.

To reuse a software component means to use it in differ-
ent operational contexts. In practice, varying operational
contexts impose different requirements. Hence, reuse re-
quires that the reusable components be adaptable to dif-
ferent requirements. In this sense, adaptability is the key
to reusability. For this reason, framework components of-
fer adaptation points where their behaviour can be mod-
ified to match the needs of specific applications.

Framework components are embedded within a pre-
defined architecture in the sense that the framework does
not simply specify individual components but it also
specifies their mutual relationships. Thus, the unit of
reuse of a software framework is not a component but
rather a group of cooperating components which, taken
together, support the implementation of some functional-
ity that is important in the framework domain.

The domain of the CORDET Framework is that of appli-
cations based on the Packet Utilization Standard or PUS?
of reference [3]. The framework is defined at two lev-
els. At specification level, it specifies a generic archi-
tecture for applications which interact with each other
by exchanging PUS commands and reports and it pre-
defines components which implement the management

2In fact, the CORDET Framework is built on a service concept
which is broader than that of the PUS. However, since this paper is
addressed to users in the space domain, the discussion is restricted to
the PUS.

= '
=) [o =D M|

f |

Reusable SW Assets
Embedded within an Architecture
Optimized for a Target Domain

Reusable SW Assets
are specialized for the
Target Application

Instantiated

Figure 3. The Software Framework Concept

of these commands and reports. The pre-defined com-
ponents are endowed with adaptation points where their
behaviour can be modified to implement the specific ser-
vices required by specific applications.

The CORDET Framework provides a complete and un-
ambiguous behavioural model for these components. The
behavioural model is built using the FW Profile. The
FW Profile is a UML Profile which was first proposed
in the ASSERT Project (see reference [4]) and was later
extended by P&P Software GmbH (see reference [5]).
This model-based approach allows users to analyze the
behaviour of their applications statically and at specifi-
cation level. Model checking techniques can be used to
provide formal proof of correctness. The specification of
the CORDET Framework is publicly available in refer-
ence [6].

Figure 6 shows an example of the models used to
define the CORDET Framework. The state machine
in the figure represents an incoming command. Its
states (ACCEPTED, PROGRESS, TERMINATED and
ABORTED) reflect the processing stages of incoming
PUS commands which are first accepted, are then exe-
cuted and remain “in progress” for some time and are fi-
nally terminated; at any stage, telecommand processing
can be aborted. Some of the elements in the state ma-
chine are prefixed by the UML stereotype <<AP>>.
This stereotype identifies the adaptation points of the
framework, namely the points where application develop-
ers can inject their application-specific behaviour to cus-
tomize the framework to meet their requirements.

Two example of adaptation points in figure 6 are the
Ready Check and the Start Action (both appear on the
transition out of state ACCEPTED). The Ready Check
represents the fact that incoming telecommands may re-
main pending for some time. A telecommand is only exe-
cuted when it becomes “ready” and the Ready Check en-
capsulate the conditions which makes the telecommand
ready to start execution. This is an adaptation point be-
cause different applications and different telecommands
within the same application have different readiness con-
ditions. Thus, the framework states that all telecommand
must define a readiness condition but it does not say
what the readiness condition is for a specific telecom-
mand. Similarly, the Start Action encapsulates a be-
haviour which is executed when the telecommand has

Target Application

from the Framework

become ready and has started execution. This is again
an adaptation point because each application and each
telecommand within an application may have a different
Start Action. Thus, the framework states that all telecom-
mand must define a Start Action but it does not say what
that action is for a specific telecommand.

The CORDET Framework is provided with a list of
Adaptation Points of which an excerpt is shown in table
1. This list exactly determines how the framework can be
extended by an application developer. It can also be used
as an instantiation guide since the instantiation process
for the framework essentially consists in resolving each
framework adaptation point. Note that, as shown in table
1, for most adaptation points, the framework pre-defines
default actions which application developers are free to
take over or override.

Table 1. Specification of Adaptation Points

AP-ID | Adaptation Default
Point Value

ICM-8 | Start Action Set action outcome

of InCommand | to ”success”

ICM-9 | Progress Action | Set action outcome
of InCommand | to ”completed”

ICM-10 | Termination Set action outcome
Action to “success”
of InCommand

ICM-11 | Abort Action Do nothing
of InCommand

ICM-12 | Operation to Generate command
of Report Start | acknowledge report
Failed for CMD_ACK_STR_FAIL
InCommand with command’s

identifier and with
identifier of reason of
failure as parameters

The use of the <<AP>>> stereotype is constrained by the
FW Profile which only allows certain elements of a UML
model to be marked as adaptation points. This restriction
is intended to allow the definition of invariant properties.
Invariant properties are behavioural properties which are
guaranteed to hold both on the framework model and on
the model of all applications instantiated from the frame-
work (provided that instantiation is done according to the
rules, namely by overriding adaptation points). Exam-
ples of simple invariant properties defined on the model
of figure 6 are:

e A telecommand only starts execution if its Ready
Check returns "ready”;

e When a telecommand is released for execution, it
executes its Start Action.

The above properties can be easily proven on the
framework-level model and are guaranteed to hold irre-
spective of how the adaptation points are filled in. They
therefore represent aspects of the framework behaviour
which the application developer can assume will hold on
his application and which the application developers does
not have to verify at application level.

The specification of the CORDET Framework is de-
fined at UML-level and is therefore implementation-
independent. P&P Software GmbH offer a C-language
implementation of its specification with minimal CPU
and memory requirements (about 20 kBytes) and excel-
lent scalability in the sense that the framework overhead
is independent of the number of services or of the number
of telecommands or telemetry reports supported by an ap-
plication. As already noted, a crucial feature of reusable
components is their adaptation model. At C language
level, the adaptation points of the CORDET Framework
are mapped to the following adaptation mechanisms:

o Define Constants: framework components use
#DEFINE constants whose value may be overrid-
den by application developers.

e Define Function: framework components use func-
tion pointers and application developers must pro-
vide an implementation for the missing functions
(or, if available, may choose to use the default im-
plementation provided at framework level)

o [mplement Interfaces: the framework defines inter-
faces as C header files and application developers
must provide an implementation for them.

o Define Types: framework components use variables
of a type defined as a t ypede £ and application de-
velopers may override the default type definition.

The table of adaptation points of which an excerpt
is shown in table 1 is extended to show how each
specification-level adaptation points is mapped to an
implementation adaptation-point using one of the four
mechanisms listed above.

The selected adaptation mechanisms allow components
to be adapted without changing their source code. This
is extremely important because it has allowed P&P
Software GmbH to provide a Qualification Data Pack-
age (QDP) for the C-language implementation of the
CORDET framework. The QDP consists of:

e User Manual which discusses implementation is-
sues which are relevant to end-users.

e Software Requirements which formally specify the
implementation.

e An Implementation Traceability Matrix which
shows how each requirement is implemented.

o A Verification Traceability Matrix which shows how
the implementation of each requirement is verified.

o A Validation Traceability Matrix which justifies
each requirement with respect to the intended use
of the CORDET Framework.

o Test Suite with 100% statement, function, branch,
and condition coverage.

e Doxygen Documentation for the entire framework
code.

The implementation of the CORDET Framework is avail-
able as free software under a GPL from reference [7] and,
on request, on less restrictive commercial licences. The
Qualification Data Package is also freely available an can
be downloaded together with the framework software.

The CORDET Framework is the end-point of a devel-
opment effort which stretches back nearly 15 years and
includes both ESA-funded projects (see reference [8])
and prototyping activities done by P&P Software GmbH
within the space domain (see references [9] and [10]) and
in other domains with similar reliability requirements.

3. USE OF CORDET FRAMEWORK FOR THE
TASW

Like other PUS applications, the CHEOPS application
software is specified in terms of the services it provides
to others and of the services it requires from others. The
CORDET Framework provides a specification-level be-
havioural model of PUS services. This model was used
to express the requirements of the IASW. This resulted in
a specification which was guaranteed to be both complete
and unambiguous.

The transition from the specification to the implemen-
tation is fairly straightforward because the CORDET
Framework User Manual explicitly lists all the adaptation
points offered by the framework and, for each adaptation
point, it identifies the adaptation mechanism (one of the
four mechanisms listed in section 2) and it points to the
part of the framework code where the adaptation point
is implemented. The framework instantiation process
therefore consists in going through this list and checking
that each adaptation point is closed with the appropriate
application-specific functionality.

With respect to the examples of adaptation points dis-
cussed in the previous section, the Ready Check and the
Start Action are mapped to functions which must be im-
plemented by the application developer and are plugged
into the framework infrastructure as function pointers.
The resulting structure of the application is rather like
in figure 4. The CORDET Framework acts as a kind of

domain-specific operating system for PUS applications.
User-provided code mostly consists of call-back func-
tions which are registered with the framework and are
called by the framework. An important point is that most
of the logical complexity (branching logic) resides in the
framework code. This code is already qualified at frame-
work level and does not need to be re-qualified because
the framework code is used without changes. The user
code, by contrast, tends to be simple and often merely
consists of linear sequences of statements. The use of the
framework consequently has a significant and beneficial
impact on qualification costs.

User-Provided Code

Plug-In Functi
Application Software (Plug-In jnc ons)

i

y

Adaptation
Point ™

Reused Code
(Controls Flow of Execution)

Figure 4. Application Software Structure

The most demanding part of the instantiation process is
the provision of the functions which are plugged into
the framework infrastructure as function pointers. These
functions hold the behaviour associated to the IASW
commands and reports. The IASW supports 16 services
and well over 40 commands and reports. Each command
and report defines several adaptation points correspond-
ing to, for instance, the acceptance checks for the com-
mands, the actions executed by the commands, the data
collected by the reports, etc. The management of this
variability proved daunting and eventually a code gener-
ator was built which automatically generates the headers
and implementation stubs for all these function from an
XML-based description of the PUS services provided by
the IASW (see Figure 5). This auto-coding facility will
probably be incorporated as a standard offering in future
versions of the CORDET Framework.

4. CONCLUSIONS

At the time of writing, the development of the CHEOPS
instrument software is between PDR and CDR. The expe-
rience from the use of the framework has so far extremely
positive with positive impacts on the specification pro-
cess (because the application was specified by customiz-
ing the pre-defined specification of the framework and
because the framework behavioural models could be re-
used to build the application logical model) and at valida-
tion level (because the qualification data package of the
framework could be directly imported into the application

data package).

The re-use approach adopted for the CHEOPS TASW is
distinctive in at least four respects:

o Third-party re-use: the entity which developed the
framework (P&P Software GmbH) is not the same
as the entity which is instantiating it (University of
Vienna).

o Multi-level re-use spanning specification (through
the use of the behaviour model of the framework),
implementation (through the deployment of the
pre-defined framework components) and validation
(through the incorporation of the framework qualifi-
cation data package in the application’s own qualifi-
cation data package).

e Open-source re-use: the framework and all its doc-
umentation (including in particular its qualification
data package) are publicly available.

e Call-back form of re-use: the IASW is built as a set
of functions which are plugged into the framework
infrastructure as function pointers and which, at run-
time, are called by the framework which controls the
flow of control for the handling of commands and
reports.

REFERENCES

[1] Pasetti A., 2002, Software Frameworks and Em-
bedded Control Systems, LNCS Series, Vol. 2231,
Springer-Verlag

[2] Pasetti A., Schaufelberger W., 2009, Modeling and
Software for Automation, in: S. Y. Nof(ed), Springer
Handbook of Automation, Springer-Verlag

[3] ESA, 30 January 2003, Ground Systems and Opera-
tions Telemetry and Telecommand Packet Utilization
Standard. ECSS-E-70-41A, ECSS Secretaria, ESA-
Estec

[4] ESA, 2004, ASSERT Project ESA Web Site:
http://www.esa.int/ TEC/Software_engineering_and._-
standardisation/TECJQ9UXBQE_0.html

[5] P&P Software GmbH, 2012, FW Profile Project Web
Site: http://pnp-software.com/fwprofile

[6] P&P Software GmbH, 2014, The CORDET Frame-
work Definition, PP-DF-COR-00002, Iss. 1.5, avail-
able from CORDET FW Web Site: http://pnp-
software.com/cordetfw

[7] P&P Software GmbH, 2014, CORDET Frame-
work Project Web Site: http://www.pnp-
software.com/cordetfw

[8] Cechticky V., Pasetti A., Schaufelberger W., 2003,
A Generative Approach to Framework Instantiation,
in: F.Pfenning, Y. Smaragdakis (eds), Generative
Programming and Component Engineering (GPCE),
LNCS Series, Vol. 2830, Springer-Verlag

[9] Montalto G., Pasetti A., Salerno N., 2003, An Adapt-
able C++ On-Board Application, Proceedings of the
14-th Data Systems in Aerospace (DASIA) Confer-
ence, Prague, Czech Republic

[10] Cechticky V., Montalto G., Pasetti A., Salerno N.,
2002, The AOCS Framework, Proceedings of the 5-
th International ESA Conference on Spacecraft GNC,
Frascati, Italy

CORDET PUS XML
Schema

IASW Software
Requirement Specifications

compiiant compliant

inn nf Service 211

(Data Model)

———————————— |
|/ | Abbreviations: |
M | SA=Start Action |
| PA=Progress Action |
| TA=Termination Action |
| Flag_2=Pmgress Ack Requirad :
e
p——
TERMINATED
s =
ABORTED \.
[TA Outcome==Success]/
Entry: <<AP==Abart Action if (Term. Ack Required)
. <<AP>>Report Term. Success

Inputs

CORDET
App.
CORDET C Code PUS
Generator C Code
(Python based) 7
.tex to .pdf TMITC
LaTeX Generator :> ICD
(Python based) ; (pdf)
I
Automatic Code Generators Outputs

Figure 5. Automatic Generation of the Command and Report Functions

“

-
ACCEPTED Execute [<<AP>>Ready Check] / <<AP>>5tart Action

— v

<<AP>>Report Start Failed

[5A Outcome==Success]/ if (Start Ack Required)
<<AP>>Report Start Success

[SA Outcome==Failed] /

[TA Outcome==Failure] /

PROGRESS

S

‘ Entry: <<AP>>Pmgress Action

4 <<AP>>Report Progress Success
<<AP=>Pmgress Action

if ({PA Outcome !=Failed) && Flag_2

if ((PA Outcome !=Failed) && Flag_2

<<AP>>Report Progress Success

[PAO
<<AP>>Termination Action

1

<<AP>>Report Term. Failed 0
<
«

A

[PA O

1/ <<AP=>Report

gress Failed

J

Figure 6. Behavioral Model for Incoming Commands

