

THE ADAPTABILITY CHALLENGE
FOR EMBEDDED CONTROL SYSTEM SOFTWARE

V. Cechticky1, A. Pasetti1,2, W. Schaufelberger1

1Institut für Automatik, ETH-Zürich, Physikstr. 3, Zürich, CH-8092
2 P&P Software GmbH, Physikstr. 3, Zürich, CH-8092

cechti@control.ee.ethz.ch; pasetti@pnp-software.com; ws@control.ee.ethz.ch

Abstract: Software-related costs account for a growing share of total development costs
for embedded control systems. In the control field, containment of software costs can be
done either through the use of model-based tools (e.g. Matlab) or through a higher level
of reuse. This paper argues that the second strategy is advantageous in the case of
industrial control systems targeting niche markets where systems tend to be one-of-a-kind
and where they can be organized in “families” of related applications. The paper then
argues that progress in raising the level of software reuse in these fields depends on the
adoption of better software adaptability techniques. The most promising such techniques
are reviewed from the standpoint of control engineers. Copyright © 2005 IFAC

Keywords: software reuse, adaptation, control systems, object-oriented programming,
components

1. INTRODUCTION

In addressing the problem of how to contain
software-related costs for embedded control systems,
the first question to be answered is whether there is
anything “special” about these systems that justifies
treating them separately from other categories of
applications. Our position is that this is indeed the
case and that control applications pose two
challenges to software designers that are specific to
them and set them apart from other applications
(both in the embedded and non-embedded world).
The first one is the Non-Functional Challenge.
Embedded control systems are typically subject to
non-functional requirements (covering issues such as
timing, dependability, availability, etc.). Their
correct implementation requires the use of techniques
that allow non-functional as well as functional
aspects to be modelled. The second challenge is the
Variability Challenge. Embedded control
applications are often built as one-of-a-kind systems
that can be seen as instances of families of related
applications. Their efficient development requires the
use of techniques that can model entire families
rather than just individual applications.

The non-functional challenge has long been
recognized. It is addressed by several research

groups around the world (see the special issue of
(Sastry, et al., 2003) for a survey) and very
considerable progress has been made in developing
techniques that handle non-functional, and in
particular timing, problems. The variability challenge
has instead long gone unnoticed. Its more recent
recognition means that it is likely to be the major
source of technical improvements in the near future.
It is also likely to have the sharpest impact on
development costs because the ability to exploit
commonalities among different applications to
reduce duplication of development has an obvious
and clear imp act on software costs at all levels (from
design down to testing and servicing). In this paper,
it is argued that one of the keys, or perhaps even the
key, to addressing the variability challenge lies in the
development and application of more effective
adaptation techniques for control system software.

2. MODEL- VS. REUSE-DRIVEN APPROACH

Two approaches have emerged to tackle the
variability problem in the embedded world: the
model-driven and the reuse-driven approaches. With
the former approach (see Figure 1), the application
requirements are expressed in a modelling
environment that is capable of automatically

generating the application code. The prototypical
example of such an environment is the Matlab tool
suite. The increase in efficiency arises from the fact
that the software design and implementation phases
are automated and that the control engineer can take
direct control of the software development process
without having to resort to the intermediary services
of a software engineer.

Fig. 1: Model-Driven Approach

In a reuse-driven approach instead (see Figure 2), the
application code is built by configuring and
composing a set of pre-defined software building
blocks. The increase in efficiency now arises from
the possibility of reusing existing software artifacts
(modules, components, code fragments, etc.).
Traditionally, the reuse-driven approach was
implemented by developing libraries of reusable
modules. More recently, software product families
(Bosch, 2000) and software frameworks (Fayad, et
al., 1999; Gamma, et al., 1995; Pasetti, 2002) have
emerged as more convenient reuse vehicles that
allow reuse to take place at architectural as well as at
the code level.

Fig. 2: Reuse-Driven Approach

In the control community there is a widespread belief
that the model-driven approach has won the day and
that tools like Matlab are on the verge of solving the
software problem for control systems. In our view,

this is a misconception. Model-driven tools owe their
power to the fact that they offer high-level
abstractions that are relevant to their users. Matlab,
for instance, supports the direct expression of
concepts like “transfer function”, or “PID”, or “state
machine” that control engineers can directly use to
express their needs (as opposed to having to code
them in lower level languages such as C). The price
paid for this power, however, is narrowness of focus.
Model-driven tools are designed for use within a
certain domain and their effectiveness declines very
steeply as one moves away from that domain. The
problem for control engineers is that their
applications tend to be multi-domain. A complete
control application does not simply cover
implementation of control laws. In fact, in most
cases, the implementation of control laws – the
specific domain of Matlab – is only a small fraction
of the total control software 1. Most of the software
normally is concerned with functionalities such as
management of external sensors and actuators,
management and generation of housekeeping data,
management and processing of commands from
some supervisory unit, implementation of failure
detection and identification logic, implementation of
failure recovery actions. Matlab-like tools are ill-
suited to cover these functionalities (or, at any rate,
they are not better suited than general-purpose
languages). A reuse approach may then be more
appropriate. The cost of developing reusable building
blocks is lower than the cost of developing model-
driven tools and a reuse-driven approach is therefore
affordable even for niche products – as most
industrial control systems are. The reusable blocks
can moreover be more easily targeted to the specific
needs of their users and can therefore more easily
match the often idiosyncratic needs of control
applications.

3. REUSE AND ADAPTABILITY

To reuse a software asset (a component, a fragment
of code, a design model, etc.) means to use it in
different operational contexts. In practice, different
operational contexts will always impose different
requirements on the reusable assets. Hence, effective
reuse requires that the reusable assets be adaptable to
different requirements. In this sense, adaptability is
the key to reusability and the availability of software
adaptability techniques is the necessary pre-condition
for software reusability in domains like industrial
control systems where there is a high degree of
product variability and where individual products
must be tailored to their operating environment.

A practical and effective reuse-driven approach must
therefore take the form shown in Figure 3. The
reusable assets are organized in a repository. The
repository covers the need of a particular (and often

1 We have experience with the development of
software for satellite control system where, typically,
control algorithms take 20-30% of the total software.

narrow) domain. Applications within the domain are
constructed by selecting items from the repository,
tailoring them to the needs of the application by
passing them through an adaptation phase, and
finally assembling them to create the target
application (Cechticky, et al., 2003). The approach
shown in Figure 3 is often called product family
approach and is arguably the most successful way to
achieve software reusability in an industrial context.

Fig. 3: Reuse through Adaptability

Software reuse is perhaps the oldest approach to the
reduction of software costs and has often been tried
in the past. Past attempts, however, had only mixed
success primarily because they either ignored the
adaptation phase shown in Figure 3 or because the
state-of-the-practice techniques available at the time
were not sufficiently powerful to model the
variability in the target domain. As a result, the
software of many – if not most – industrial control
applications is still crafted by hand. This paper
argues that this is unnecessary because recent
advances in software engineering have brought very
powerful adaptation techniques within the reach of
mainstream applications. A family-based reuse-
driven approach has therefore become possible and
advantageous even for niche domains. The next
sections of this paper give an overview of the main
adaptability techniques and discuss their relevance to
control applications. Two categories of adaptability
techniques are recognized. The first one looks at
techniques to model adaptability. The second one
looks at techniques to implement adaptability
mechanisms. Section 4 consider feature modelling
that is the most prominent of the adaptability
modelling techniques whereas Sections 5 and 6
consider object-oriented software frameworks and
aspect oriented programming which are the most
powerful adaptability techniques available at present.
It should be stressed that all three technologies
discussed in the next sections are mainstream
technologies and sufficiently mature for use in an
industrial context.

4. MODELLING ADAPTABILITY

One of practical obstacles to the adoption of a reuse-
driven approach is the management of the reusable
assets. On the one hand, one would like to have as
rich a repository of reusable items as possible (to
increase the coverage of the repository) but, on the
other hand, a large number of reusable items makes it
difficult for the user to select those that are relevant
to his particular needs. There is a point where the
cost of selecting the reusable items defeats the
purpose of reuse. Feature modelling (Kang, et al.,
1990) provides one way to address this problem.

In general, feature models (Beuche, et al., 2003;
Cechticky, et al., 2004; Czarnecki and Eisenecker,
2000) are a means to model the variability and
multiplicity of configurations of a certain system. In
our context, they can be used to describe the features
of the potential applications that can be instantiated
from a repository of reusable software assets. Feature
models are usually represented graphically as tree-
like structures where each node represents a feature
and each feature may be described by a set of sub-
features represented as children nodes. Various
conventions have been evolved to distinguish
between mandatory features (features that must
appear in all applications instantiated from the
repository) and optional features (features that are
present only in some applications instantiated from
the repository). Limited facilities are also available to
express constraints on the legal combinations of
features.

Fig. 4: Feature Model Example

Figure 4 shows an example of feature diagram
representing a (much simplified) family of control
systems. The diagram states that all control systems
in the target domain have a single processor, which is
characterized by its internal memory size, and have
one to four sensors and one or more actuators.
Sensors and actuators may have a self-test facility
(optional feature). Sensors are either speed or
position sensors whereas actuators can only be
position actuators. In general, feature models like the
one in Figure 4 can be built for each repository of
reusable items and prospective users of the repository
can then use the feature model to specify their
application by ticking off the features they want. This
specification process guarantees that the application
will be within the domain of the repository.

A feature model approach is especially beneficial in
the control domain where the control engineer is not
necessarily a software expert. The use of the feature
model allows him to make use of the repository of
reusable software assets with only a limited
understanding of its structure.

5. OBJECT -ORIENTED FRAMEWORKS

The concept of product family introduced above (see
Figure 3) is very generic. In particular, it does not
say anything about the nature of the reusable assets
(are they components, subroutines, code fragments,
or models?) or about their mutual relationships (are
they completely independent of each other or are
they embedded within some architecture?). In
practice, there is now a consensus that repositories of
reusable software assets can be effective only if some
“structure” is imposed upon them. Software
frameworks offer a particular way to organize the
items in the reusable repository and hence provide
precisely such a structure.

In the case of a framework approach, the items in the
repository are abstract interfaces (namely definitions
of abstract services that the applications must
provide) and components providing default
implementations for those interfaces (Blum, et al.,
2003). The interfaces, taken together, define an
architectural skeleton that is shared by all
applications instantiated from the framework. The
chief virtue of a framework is thus its ability to raise
the level of reuse from that of mere code fragments
to that of an entire architecture. In predefining an
architecture optimised for applications in their
domain, software frameworks go beyond subroutine
or class libraries because they make available not just
individual modules but also the relationships
between them. Subroutine and class libraries, on the
other hand, are generic artifacts that can be used in a
large variety of applications whereas frameworks are
targeted at a specific – and often narrow – domain.
They aim at depth rather than breadth of reuse.

Fig. 5: Software Framework Structure

The typical representation of a software framework
is shown in Figure 5. The unshaded area represents
the architectural backbone shared by all applications

in the framework domain. The framework captures
this architectural backbone and makes it available to
application developers who adapt it to their needs by
plugging into the framework components that
implement the application-specific behaviours (the
darker boxes in the figure).

Since a software framework exists primarily to be
adapted, its quality depends essentially on the ease
with which the artifacts it offers can be adapted to
match the needs of its users. Software frameworks
are usually categorized on the basis of the adaptation
technology they use. Virtually all frameworks built in
recent years are object-oriented in the sense that they
use inheritance (Figure 6) and object composition
through abstract coupling (Figure 7) as their chief
adaptation techniques. In the former case, the
behaviour of a reusable component is tuned by
extending it through inheritance. In the latter case, it
is tuned by letting the component delegate the
variable part of its behaviour to an external
component that is characterized through an abstract
interface.

Fig. 6: Component Adaptation through Inheritance

Fig. 7: Component Adaptation through Composition

From the point of view of a user – and in particular a
user in the control domain – the main point about
these adaptation techniques is that they allow the
behaviour of a reusable component to be adapted
without touching its source code. Control
applications are often mission-critical and their
software must normally undergo some kind of

qualification process. The fact that adaptation can be
achieved without touching the source code of the
reusable component means that the component can
be qualified only once and can then be reused
without having to be re-qualified. In a sense, object-
orientation allows the qualification process as well as
the code of a component to be reused. Given the cost
of software qualification processes, this is an
important advantage.

6. ASPECT-BASED ADAPTABILITY

As indicated in Section 1, one of the key problems in
the design of control system software is the presence
of non-functional requirements covering issues such
as timing, reliability, observability, testability, and so
forth. Thus, in the control domain, adaptability
techniques must also cover adaptation in the non-
functional aspects of the behaviour of reusable
components. The object-oriented techniques outlined
in the previous section are unfortunately inadequate
in this respect because they can only be used to tune
the functional part of the behaviour of a component.
The lack of tools to model non-functional
adaptability was one of the prime causes of the low
level of reuse in the control domain. Recently,
Aspect Oriented Programming (AOP) has emerged
as a remedy for this problem.

Aspect oriented programming (AOSA, 2004; Birrer,
et al., 2004) is a software paradigm that promotes the
application of the principle of separation of concerns
to the non-functional aspects of a software system.
At the most basic level, aspect oriented techniques
can be seen as a means to perform automatic
transformations of some base source code. An aspect
oriented environment consists of two primary items:
an aspect language and an aspect weaver. The aspect
language allows the non-functional aspects to be
specified and encapsulated in self-contained
modules. The aspect weaver is a compiler-like tool
that reads an aspect program and projects the
changes it specifies onto some base code. This
process is illustrated in Figure 8.

Fig. 8: Aspect Oriented Programming Environment

An example may illustrate the relevance of AOP to
control systems. Control applications are normally
subject to real-time constraints. Unfortunately, even
within the same domain, there is usually no single
real-time architecture that is adopted by all control
applications. In particular, some applications
privilege simplicity over efficiency and opt for a

non-preemptive scheduling approach whereas others
use some form of preemptive scheduling in order to
optimize the use of CPU resources. This lack of a
single real-time model poses a problem for reuse-
driven approach because the real-time model has an
impact on the implementation of the reusable
components. Consider, for instance, the problem of
synchronization code. If a non-preemptive real-time
architecture is assumed, then there is no need to have
synchronization code in the framework components.
If, on the other hand, preemptive scheduling is
allowed, then the framework components must be
endowed with synchronization mechanisms that
ensures that they can are accessed in mutual
exclusion.

The traditional solution to this problem is for the
reusable components to make the worst case
assumption and implement synchronization
mechanisms. This forces some users to carry a great
deal of excess baggage and to suffer the associated
memory occupation and execution efficiency
penalties. If the implementation language is C/C++
(a common choice in the control domain), there is the
additional difficulty that real-time facilities are not
provided within the language and hence their
implementation depends on the operating system.
This means that the reusable components become
dependent on a particular choice of operating system.

The alternative solution is based on the use of AOP
techniques. In this case, the reusable components are
developed without any regard to the real-time model
(they only implement the functional part of the
application behaviour) and the real-time model is
specified separately in an aspect component . The
user can then choose the functional and aspect
components independently from each other and can
generate the deployable component (containing both
the functional and the real-time behaviour) by
merging them using an aspect weaver.

AOP is a recent technique and its support tools are
targeted at desktop applications. In particular, they
are difficult to use in a context – such as that of many
control domain – where the software has to undergo
a qualification process. This is due to the fact that the
merging between the base code and the aspect
program is normally done at the level of object code.
This would make the qualification of the modified
code very difficult (because one would have to
qualify code for which no source code is available).
In recent work, however, we have addressed this
problem and have developed an aspect oriented
environment that operates at the level of source code
and that therefore is well-suited to qualifiable
applications programming (Birrer, et al., 2004).

7. SUMMARY AND APPLICATIONS

This paper has presented the case for a reuse-driven
approach to the development of the software for
control systems. This case is especially strong in

niche domains where applications tend to be one-of-
a-kind and where applications can be organized in
“families” of related applications. Under such
conditions, the development of model-driven tools
can be too expensive and the use of commercial
model-driven tools such as Matlab is inadequate to
cover all the needs of the family. A reuse-driven
approach can then be advantageous. The paper then
argued that reusability at the software level depends
crucially on adaptability and it presented three
techniques that foster the use or the development of
adaptable software assets. Feature modelling
techniques allow adaptability to be modelled from
the point of view of the user. They provide a tool
which allows a control engineer to specify his
application in terms of the features offered by the
reusable software asserts. Object-oriented frame-
works raise the level of reuse from the traditional one
of mere code fragments to the level of an entire
architecture with correspondingly greater cost
savings. Object-oriented techniques in particular
allow components to be adapted without modifying
their source code. This is a valuable feature in a field
like control engineering where modifying source
code is a very expensive process due to qualification
requirements. Finally, aspect oriented techniques
allow adaptability with respect to the non-functional
properties that so often characterize control systems.

The above techniques have been developed in the
last decade or so in academic or research settings but
they are now mature enough to be considered in
industrial applications. We have recently tested their
maturity with the development of the OBS
Framework (P&P Software, 2004) which uses all
three techniques discussed in this paper. The range of
applications that can be instantiated from the
framework is described by a feature model. The
framework is built as a set of components that use
both inheritance and object composition to be
adapted to match the needs of target applications.
The framework components only encapsulate
functional behaviour. Adaptation with respect to
timing requirements is done through aspect
programs. Finally, the OBS Framework offers
facilities to integrate Matlab-generated code. It thus
demonstrates that the two alternatives presented in
Section 1 – the model-driven and the reuse-driven
approaches – are not mutually exclusive.

REFERENCES

AOSA (2004). Homepage of the Aspect-Oriented

Software Development. http://aosd.net/
Beuche, D., H. Papajewski and W. Schröder-

Preikschat (2003). Variability Management with
Feature Models. In: Proceedings of the
Software Variability Management Workshop, p.
72-83.

Birrer, I., V. Cechticky, A. Pasetti and O. Rohlik
(2004). Implementing Adaptability in Embedded
Software through Aspect Oriented
Programming. In: Proceedings of International

IEEE Conference Mechatronics & Robotics ‘04,
p. 85-90. Sascha Eysoldt Verlag.

Blum, A., V. Cechticky, A. Pasetti and W.
Schaufelberger (2003). A Java-Based
Framework for Real-Time Control Systems. In:
Proceedings of 9th IEEE International
Conference on Emerging Technologies and
Factory Automation , p. 447-453. IEEE and
UNINOVA.

Bosch, J. (2000). Design and Use of Software
Architectures – Adopting and evolving a
product-line approach. Addison-Wesley
Professional.

Cechticky, V., P. Chevalley, A. Pasetti and W.
Schaufelberger (2003). A Generative Approach
to Framework Instantiation. In: Proceedings of
the 2nd International Conference on Generative
Programming and Component Engineering, p.
267-286. LNCS Vol. 2830, Springer-Verlag.

Cechticky, V., A. Pasetti, O. Rohlik and W.
Schaufelberger (2004). XML-Based Feature
Modelling. In: Software Reuse: Methods,
Techniques and Tools: 8th International
Conference, p. 101-114. LNCS Vol. 3107,
Springer-Verlag.

Czarnecki, K. and Eisenecker (2000). Generative
Programming – Methods, Tools, and
Applications, Addison-Wesley.

Fayad, M.E., D.C. Schmidt and R.E. Johnson (1999).
Building Application Frameworks: Object-
Oriented Foundations of Framework Design,
John Wiley & Sons.

Gamma, E., R. Helm, R. Johnson and J. Vlissides
(1995). Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley.

Kang, K.C., S.G. Cohen, J.A. Hess, W.E. Novak and
 A.S. Peterson (1990). Feature-Oriented Domain
 Analysis (FODA) Feasibility Study. In:
 Technical Report No. CMU/SEI-90-TR-21,

Software Engineering Institute, Carnegie
Mellon.

Pasetti, A. (2002). Software Framework and
Embedded Control Systems, LNCS Vol. 2231,
Springer-Verlag.

P&P Software (2004). The OBS Framework.
 http://www.pnp-software.com/ObsFramework/
Sastry, S., J. Sztipanovits, R. Bajcsy and H. Gill

(2003). Special Issue on Modeling and Design of
Embedded Software. Proceedings of the IEEE,
Vol. 91 No. 1 .

