
www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

The CORDET Framework

User Manual

P&P Software GmbH
High Tech Center 1

8274 Tägerwilen (CH)

Web site: www.pnp-software.com
E-mail: pnp-software@pnp-software.com

Written By: Alessandro Pasetti

Checked By: n.a.

Document Ref.: PP-UM-COR-0002

Issue: 1.0

Created On: 05/05/2019, at: 00:18

c©2019 P&P Software GmbH. All Rights Reserved. 1

www.pnp-software.com
www.pnp-software.com
mailto:pnp-software@pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

Contents

1 Referenced Documents 6

2 Introduction 7

3 Installation & Content Overview 8

3.1 Dependency on C1 Implementation . 8
3.2 Dependency on External Libraries . 8
3.3 Source Code . 9
3.4 Support Documentation . 10
3.5 Doxygen Documentation . 10
3.6 Test Suite . 10
3.7 Acceptance Test Procedure and Test Reports 10
3.8 Support Scripts . 11
3.9 Naming Conventions . 12

4 Framework and Service Concepts 14

4.1 Software Framework Concept . 14
4.2 Service Concept . 15
4.3 Objectives of CORDET Framework . 16

4.3.1 De�nition of Command and Report Concepts 17
4.3.2 De�nition of CORDET Components 17
4.3.3 De�nition of Standard Services . 18

4.4 Objectives of C2 Implementation . 19
4.5 Relationship To Packet Utilization Standard (PUS) 19
4.6 Middleware Layer . 20

5 State Machine and Procedure Model 21

5.1 State Machine Extension . 21

6 Component Model 23

6.1 Component Hierarchy . 25
6.2 Component Implementation . 27
6.3 Component Data . 28

7 Adaptation Model 30

8 Application Start-Up and Shut-Down 32

8.1 Component Instantiation . 32
8.2 Application Start-Up . 33

9 Command and Report Concepts 36

9.1 Command Concept . 36
9.1.1 The Command Attributes . 37
9.1.2 The Command Conditional Checks . 38
9.1.3 The Command Actions . 38
9.1.4 Command Lifecycle . 39
9.1.5 Mapping to C-Level Constructs . 41

9.2 Report Concept . 43
9.2.1 The Report Attributes . 43
9.2.2 The Report Conditional Checks . 44

c©2019 P&P Software GmbH. All Rights Reserved. 2

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

9.2.3 The Report Actions . 45
9.2.4 Report Lifecycle . 45
9.2.5 Mapping to C-Level Constructs . 46

10 Packet Interface 48

10.1 Middleware Assumptions . 48
10.1.1 Out-Going Interface . 49
10.1.2 Incoming Interface . 50

10.2 Packet Implementation . 50
10.3 Packet Interface Management . 51

10.3.1 The OutStream Component . 52
10.3.2 The OutStreamRegistry Component 54
10.3.3 The InStream Component . 55

11 Command and Report Management 59

11.1 Management of Out-Going Commands and Reports 59
11.2 Management of Incoming Commands and Reports 60

12 The OutComponent Component 63

13 The OutLoader Component 66

14 The OutManager Component 68

15 The OutRegistry Component 71

16 The InLoader Component 74

17 The InCommand Component 78

18 The InReport Component 80

19 The InManager Component 81

20 The InRegistry Component 83

21 Memory Management 84

21.1 Components with Late Instantiation . 86

22 Real Time Issues 89

22.1 Scheduling of Framework Components . 89
22.1.1 Concurrency . 89
22.1.2 Recursion . 90

23 Error Handling 91

24 Framework Instantiation Process 92

25 Demo Application 98

A Adaptation Points 99

c©2019 P&P Software GmbH. All Rights Reserved. 3

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

List of Figures

4.1 Software Framework Concept . 14
4.2 Applications as Providers and Users of Services 15
4.3 Services as Sets of Commands and Reports 16
4.4 Re-Routing of Service Requests . 16
4.5 Hierarchical De�nition of Services . 18
4.6 Applications and Middleware . 21
6.1 Base State Machine . 23
6.2 Initialization and Reset Procedures . 24
6.3 Component Hierarchy . 26
6.4 Component Data . 29
8.1 Application State Machine . 34
9.1 Command Lifecycle (Informal Notation) . 41
9.2 Report Lifecycle (Informal Notation) . 46
10.1 Physical And Logical Connections . 49
10.2 Packet Interface Concept . 52
10.3 The OutStream State Machine . 53
10.4 The InStream State Machine . 56
10.5 The Packet Collect Procedure . 57
11.1 Management of Out-Going Commands and Reports 60
11.2 The Management of Incoming Commands and Reports 62
12.1 The OutComponent State Machine . 63
12.2 The Send Packet Procedure . 64
13.1 The OutLoader Load Procedure . 66
14.1 The OutManager Load Procedure . 68
14.2 The OutManager Execution Procedure . 69
15.1 The Registry Start Tracking and Registry Update Procedures 72
15.2 The Enable State Determination Procedure 73
16.1 The InLoader Execution Procedure . 75
16.2 The InLoader Load Command/Report Procedure 76
17.1 The InCommand State Machine . 78
18.1 The InReport Execution Procedure . 80
19.1 The InManager Load Procedure . 81
19.2 The InManager Execution Procedure . 82
21.1 Processing Chain for an Incoming Command or Report 87
21.2 Processing Chain for an Out-Going Command or Report 88

c©2019 P&P Software GmbH. All Rights Reserved. 4

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

List of Tables

1.1 Referenced documents . 6
3.1 Structure of Host Directory . 8
3.2 Source Code in CORDET Delivery File . 9
3.3 Execution Steps and Pass-Fail Criteria for ATP 11
4.1 Concerns of CORDET Framework and of PUS 19
6.1 List of Framework Components . 26
6.2 List of Framework Component Operations . 28
9.1 Mapping of Commands to C-Level Constructs 41
9.2 Mapping of Reports to C-Level Constructs . 46
21.1 Code Memory Footprint for C2 Implementation Modules 86
22.1 Entry Points for Scheduler . 89
24.1 Framework Instantiation Speci�cation and Implementation Steps 93
A.1 C2 Implementation Adaptation Points . 100

c©2019 P&P Software GmbH. All Rights Reserved. 5

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

1 Referenced Documents

The documents referenced in the present document are listed in the table below.

Table 1.1: Referenced documents

Ref Description Doc. Number Iss.

[CR-SP] The CORDET Framework � Speci�cation PP-DF-COR-002 2.0

[CR-RQ] The CORDET Framework � Requirements PP-SP-COR-0002 1.0

[FW-SP] The Framework Pro�le (available from: www.

pnp-software.com/fwprofile)
Release 1.3.1

[PS-SP] Ground Systems and Operations, Telemetry and
Telecommand Packet Utilization Standard

ECSS-E-70-41C C

[PX-SP] The PUS Extension of the CORDET Frame-
work (available from: www.pnp-software.com/

cordetfw)

Release 0.2

c©2019 P&P Software GmbH. All Rights Reserved. 6

www.pnp-software.com
www.pnp-software.com/fwprofile
www.pnp-software.com/fwprofile
www.pnp-software.com/cordetfw
www.pnp-software.com/cordetfw

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

2 Introduction

This document is the User Manual for the C2 Implementation. The C2 Implementation is
a C-language implementation of the CORDET Framework. The CORDET Framework is a
software framework for service-oriented applications.

The CORDET Framework de�nes an application in terms of the services it provides to
other applications and in terms of the services it uses from other applications. A service
is implemented by a set of commands through which an application is asked to perform
certain activities and by a set of reports through which an application gives visibility over
its internal state.

A service is implemented by a set of commands through which an application is asked to
perform certain activities and by a set of reports through which an application gives visibility
over its internal state. The CORDET Framework de�nes the components to receive, send,
distribute, and process commands and reports (the CORDET Components).

The CORDET service concepts supports the implementation of distributed systems of ap-
plications where individual applications residing on di�erent distribution nodes interact
through the exchange of commands and reports.

The CORDET Framework is speci�ed in reference [CR-SP]. This speci�cation is implementation-
independent. The C2 Implementation is an implementation of the CORDET Components
in the ANSI C language.

The main features of the C2 Implementation are:

• Well-De�ned Semantics: clearly and unambiguously de�ned behaviour.

• Minimal Memory and CPU Requirements: core module footprint of less than
20 kBytes and e�cient implementation in C.

• Scalability: code memory footprint independent of the number of commands and
reports.

• High Reliability: test suite with 100% code, branch, and condition coverage.

• Formal Speci�cation: user requirements to formally specify the implementation.

• Requirement Traceability: all requirements individually traced to their implemen-
tation and to veri�cation evidence.

• Documented Code: doxygen documentation for all the source code.

The behaviour of the CORDET components is modelled by means of state machines and
procedures (activitiy diagrams). The semantics of the state machines and procedure is
the one de�ned by the FW Pro�le of reference [FW-SP]. The C2 Implementation of the
CORDET Framework implements these state machines and procedures using a C-language
implementation of the FW Pro�le 1.

1The implementation of the FW Pro�le state machines and procedure is also available as a separate and
self-contained delivery under the name of C1 Implementation, see reference [FW-SP]

c©2019 P&P Software GmbH. All Rights Reserved. 7

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

3 Installation & Content Overview

The C2 Implementation is delivered as one single zip �le (the delivery �le). This �le should
be expanded in a dedicated directory. This directory becomes the host directory for the C2
Implementation. Table 3.1 gives an overview of the structure of the host directory. More
details are found in subsequent subsections.

The C2 Implementation software is delivered as source code and therefore no further in-
stallation operations are needed. A Test Suite is provided together with Unix script �les to
compile and link it.

Table 3.1: Structure of Host Directory

Sub-Dir. Sub-Directory Description

/docs Support documentation for C2 Implementation. See section 3.4.

/lib Framework Pro�le source code. See section 3.1.

/log Test reports generated by Acceptance Test Procedure. See section 3.7.

/src Source code for the CORDET Framework. See section 3.3.

/tests Source code for the Test Suite. See section 3.3.

3.1 Dependency on C1 Implementation

The behaviour of the CORDET Framework is speci�ed by means of state machines and
procedures (activity diagrams). The implementation of the framework therefore requires an
implementation of state machines and procedures. The C2 Implementation does not include
an own implementation of state machines and procedures. Instead, it uses the state machine
and procedure modules of the C1 Implementation of the FW Pro�le (see reference [FW-
SP]). These modules can be downloaded from: http://pnp-software.com/fwprofile but,
for convenience, they are also included in the C2 Implementation Delivery File.

Note that the C1 Implementation consists of three modules covering the implementation
of, respectively, state machines, procedures and RT Containers (encapsulations of threads).
The third module is not used by the CORDET Framework.

3.2 Dependency on External Libraries

The C2 Implementation (namely the CORDET Components in directory /src) only needs
the stdlib and the string libraries of the C language and the State Machine and Procedure
Modules of the C1 Implementation of the FW Pro�le. The C1 Implementation modules are
delivered together with the C2 Implementation (see previous section).

The Test Suite (namely the modules in directory /tests) use additional libraries and POSIX
services. In particular, the shell scripts which are delivered with the C2 Implementation
(see section 3.8) to generate the executable for the Test Suite need an implementation of
the POSIX library. The scripts link the POSIX library with option -lpthread. Users with
di�erent implementations of the POSIX library will have to modify the scripts accordingly.
Users without a POSIX library implementation will not be able to build the Test Suite (but
will, of course, still be able to use the CORDET Components in their own applications).

c©2019 P&P Software GmbH. All Rights Reserved. 8

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

3.3 Source Code

The source code in the CORDET delivery �le covers one instantiation of the CORDET
Framework for the Test Suite (see section 3.6).

At source code level, an instantiation of the CORDET Framework to implement an appli-
cation within the framework's domain can be split into four parts:

• Invariant Framework Software consisting of the implementation of the CORDET Com-
ponents. This part is common to all instantiations of the CORDET Framework.

• Con�gurable Framework Software consisting of the part of the framework which must
be modi�ed to be adapted to the needs of each end-application (the adaptation model
for the framework is described in section 7). This part is customized for each instan-
tiations of the CORDET Framework.

• C1 Implementation Software providing an implementation of the state machine and
procedure (activity diagram) concepts (see section 3.1). This part is common to all
instantiations of the CORDET Framework.

• Application-Speci�c Software implementing the application-speci�c (i.e. non-framework)
part of the target application.

The souce code in the CORDET delivery �le is accordingly split into several directo-
ries as presented in table 3.2. Users who wish to build a new application by instantiat-
ing the CORDET Framework would normally take the software in directories /src and
/lib/fwprofile/src without changes and would customize the software in one of the
Config directories to match their needs. The instantiation process is described in greater
detail in section 24.

Table 3.2: Source Code in CORDET Delivery File

Sub-Directory Sub-Directory Description

/src Invariant Framework Software implementin the CORDET
Components. For each CORDET Component, a dedicated
sub-directory is present which holds the code implementing
the component. The name of the sub-directory is the same
as the name of the component. The code in this directory
is used unchanged in all applications instantiated from the
CORDET Framework.

/lib/fwprofile/src Source code for the State Machine and Procedure modules
of the C1 Implementation of the FW Pro�le. The code in
this directory is used unchanged in all applications instan-
tiated from the CORDET Framework.

/tests Application-Speci�c Software for the Test Suite application.

/tests/config Con�gurable Framework Software for the Test Suite appli-
cation.

c©2019 P&P Software GmbH. All Rights Reserved. 9

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

3.4 Support Documentation

The C2 Implementation is delivered with the following support documents:

• The CORDET Framework De�nition Document which speci�es the framework
implemented by the C2 Implementation

• A User Manual (this document) which describes how the C2 Implementation is used

• A User Requirement Document which formally speci�es the C2 Implementation
through a set of requirements and provides validation and veri�cation evidence for
each requirement

These documents, together with the Test Suite and the detailed software documentation
in the Doxygen web site, constitute the Quali�cation Data Package (QDP) for the C2
Implementation. The QDP is provided for users who need to certify their application or,
more generally, who need to provide evidence of its correctness. The QDP contains the
typical information which is required for software certi�cation purposes. It can therefore be
included in the certi�cation data package of end-applications and it relieves the user of the
need to produce such information for the C2 Implementation part of their applications.

3.5 Doxygen Documentation

All the source code in the C2 Implementation (including the test suite) is documented
in accordance with doxygen rules. The entry point to the Doxygen documentation is the
index.html �le in the /docs/doxygen directory.

3.6 Test Suite

The Test Suite is a complete application which demonstrates all aspects of the behaviour of
the CORDET Components.

The main program of the Test Suite application is in �le CrTestSuite.c. This program
consists of a set of test cases. For each CORDET Component, one or more test cases are
de�ned. Each test case exercises a speci�c aspect of the behaviour of a CORDET Compo-
nent. The Test Suite o�ers 100% code, branch, and condition coverage of the CORDET
Components.

On a Unix platform, the Test Suite application can be built by running one of the support
scripts delivered with the C2 Implementation (see section 3.8).

3.7 Acceptance Test Procedure and Test Reports

The C2 Implementation is passed through an Acceptance Test Procedure (ATP) prior to
its release. The ATP is executed as a sequence of steps which are de�ned in table 3.3. For
each step, a pass-fail criterium is de�ned. An execution of the ATP is successful if all the
ATP steps satisfy their pass-fail criteria.

c©2019 P&P Software GmbH. All Rights Reserved. 10

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

Table 3.3: Execution Steps and Pass-Fail Criteria for ATP

N Step Pass-Fail Criterium

1 Run Doxygen using Doxygen Con�gura-
tion File on the entire source code of the
C2 Implementation delivery

Neither errors nor warnings are reported
by Doxygen

2 Compile the C2 Implementation source
code with "all warnings" enabled and
with the options required to run GCov
for both branch and statement coverage

Neither errors nor warnings are reported
by the compiler

3 Compile the Test Suite source code �les
with "all warnings" enabled

Neither errors nor warnings are reported
by the compiler

4 Build the executable to run the Test
Suite for the C2 Implementation and to
generate the *.gcno and *.gcda �les

Neither errors nor warnings are reported
by the linker

5 Run the Test Suite with Valgrind The Test Suite runs to completion; all
test cases are declared to have completed
successfully; no errors are reported by
Valgrind in addition to, possibly, the er-
rors discussed below

6 Run GCov on all the C2 Implementation
Files to which coverage requirements ap-
ply

For each C2 Implementation File to
which coverage requirements apply, a
*.c.gcov �le is created and the �le
shows full statement and branch cover-
age with exception of branches entered
as a result of a failure of malloc

With reference to point 5, it is noted that, depending on the test timing, Valgrind may
report 3 possible memory leaks originating in function pthread_create. This is due to the
fact that the test cases in module CrFwSocketTestCase create threads but do not join them
before terminating. This potential leak does not a�ect the framework code and is therefore
accepted.

The RunAcceptanceTest.sh shell script (not included in the delivery for end customers)
automatically executes all the procedure steps described in the table and it generates a test
report which is included in directory
reports of the delivery �le.

3.8 Support Scripts

To build the Test Suite a Make�le is provided in the root directory. This Make�le can
be used with the generally available make tool to generate di�erent targets. The following
targets are supported:

• make test Generates the test suite

• make run-test Runs the test suite

• make coverage-info Generates the gcov �les which contain the coverage information

• make gen-lcov Generates the lcov �les which contain the coverage information in
html format

c©2019 P&P Software GmbH. All Rights Reserved. 11

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

The test suite is created in the /bin sub-directory.

3.9 Naming Conventions

The C2 Implementation exports the following items towards users:

• Header and body �les

• Global functions

• Types de�ned through typedef

• Constants and macros de�ned through #define directives

The naming conventions for these items are as follows.

The names of the header and body �les of the C2 Implementation and of the global functions
they export are written as a concatenation of strings (without underscores). The �rst letter
in each string is capitalized. The names have the following form: Cr<Xx><Name>. The pre�x
"Cr" identi�es a name as belonging to the CORDET Framework implementation. The
string "Xx" identi�es the domain within the CORDET world to which the name belongs.
The following values are possible for this string:

• "Fw" identi�es a name related to the implementation of the CORDET Framework and
of its Test Suite,

The string "Name" is the proper name of the function or �le and it is made up of a concate-
nation of other strings. The following abbreviations are used in forming this name:

• "A": "action" (as in "action node")

• "Act": "action" (as in "action attached to a procedure node")

• "App": "application" (as in "the Demo Application")

• "Aux": "auxiliary" (as in "auxiliary function")

• "Config": "configuration" (as in "the con�guration of a component")

• "Cmd": "command"

• "Cmp": "component"

• "Cnt": "counter"

• "Cps": "choice pseudo-state"

• "Cr": "CORDET"

• "Cre": "creation"

• "Cur": "current" (as in "current state of a state machine")

• "D": "decision" (as in "decision node")

• "Dec": "decision" (as in "decision node in a procedure")

• "Der": "derived" (as in "the derived state machine")

• "Desc": "descriptor" (as in "the descriptor of a state machine")

• "Fin": "final" (as in "�nal node")

• "Fw": "framework"

• "Err": "error" (as in "the application error code")

• "Emb": "embedded" (as in "embedded state machine")

• "Fps": "final pseudo-state"

c©2019 P&P Software GmbH. All Rights Reserved. 12

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

• "Ini": "initial" (as in "initial mode")

• "Init": "initialization" (as in "initialization of a component")

• "Ips": "initial pseudo-state"

• "Pckt": "packet" (as in "the command is encapsulated in a packet")

• "Pr": "procedure"

• "Rec": "recursive" (as in "recursive function")

• "Rep": "report"

• "Sm": "state machine"

• "Sta": "state" (as in "the state of a state machine")

• "Temp": "temperature"

• "Trans": "transition" (as in "the transition between two states")

The names of the types de�ned through typedef start with the string "CrFw" and terminate
with the string: "_t".

The names of the #define constants are written in capitals and are made up of strings
concatenated with underscores.

c©2019 P&P Software GmbH. All Rights Reserved. 13

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

4 Framework and Service Concepts

The CORDET Framework is a software framework to support the instantiation of service-
oriented applications. This section gives an overview of the software framework concept and
of the service concept assumed in the CORDET project. A fuller version of the material
presented in this section can be found in reference [CR-SP].

4.1 Software Framework Concept

A software framework is a repository of reusable and adaptable software components embed-
ded within a pre-de�ned architecture that is optimized for applications in a certain domain
(see �gure 4.1).

Fig. 4.1: Software Framework Concept

The framework components are reusable in the sense that they encapsulate behaviour which
is common to all (or at least a large number of) applications within the framework's domain.

To reuse a software components means to use it in di�erent operational contexts. In practice,
varying operational contexts always impose di�erent requirements. Hence, reuse requires
that the reusable components be adaptable to di�erent requirements. In this sense, adapt-
ability is the key to reusability. For this reason, framework components o�er adaptation
points where their behaviour can be modi�ed to match the needs of speci�c applications.

Framework components are embedded within a pre-de�ned architecture in the sense that the
framework does not simply specify individual components but it also speci�es their mutual
relationships. Thus, the unit of reuse of a software framework is not a component but rather
a group of cooperating components which, taken together, support the implementation of
some functionality that is important within the framework domain.

Software frameworks encourage this higher granularity of reuse by being organized as a
bundle of functionalities that users can choose to include in their applications. Inclusion of
a functionality implies that a whole set of cooperating components and interfaces is imported
into the application.

In the service-oriented concept underlying the CORDET Framework, the functionalities
supported by the framework are the �services� as de�ned in the next section.

c©2019 P&P Software GmbH. All Rights Reserved. 14

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

The domain of a framework is the set of applications whose instantiation is supported by
the framework. The domain of the CORDET Framework are the applications which comply
with the CORDET service Concept introduced in section 4.2.

4.2 Service Concept

The target domain of the CORDET Framework are service-oriented applications. This
section de�nes the service concept assumed in the CORDET Project (the CORDET Service
Concept).

A service is a set of logically and functionally related capabilities that an application o�ers
to other applications. The CORDET Service concept sees an application as a provider of
services to other applications and as a user of services from other applications (see �gure
4.2).

A service is identi�ed by its type. The service type is a positive integer which uniquely
identi�es the service within the CORDET world and thus acts as a name for the service.

Fig. 4.2: Applications as Providers and Users of Services

The user of a service controls the service by sending commands to the service provider. A
command is a data exchange between a service user and a service provider to start, advance,
modify, terminate, or otherwise control the execution of a particular activity within the
service provider (see reference [PS-SP], section 3.1.13).

The provider of a service sends reports to the user of the service. A report is a data exchange
between a service provider (the report initiator) and a service user to provide information
relating to the execution of a service activity (see reference [PS-SP], section 3.1.14).

Thus, a service consists of a set of commands which the user of the service sends to the
provider of the service and of a set of reports which the service provider sends back to
its user. A command de�nes actions to be executed by the service provider. A report
encapsulates information about the internal state of the service provider (see �gure 4.3).

The same application may act as as a service provider to several user applications and, vice-
versa, it may use the services from several other providers. For instance, in �gure 4.2, the
Target Application has one user (Application A) and it acts as user for two service providers
(Applications B and C).

Figures 4.2 and 4.3 show situations where the service provider and service users have a direct

c©2019 P&P Software GmbH. All Rights Reserved. 15

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

Fig. 4.3: Services as Sets of Commands and Reports

connection but the CORDET Service Concept also supports situations where the connection
between provider and user is indirect.

In �gure 4.4, for instance, application A sends a command to application C but the command
is routed through application B. Thus, the CORDET Service Concept can be used as a basis
for the de�nition of distributed applications which interact with each other by exchanging
service requests over a network.

The network de�nes physical links between the applications in the system (e.g. the links
between applications A and B and between applications B and C in �gure 4.4) and the
CORDET infrastructure de�nes logical links between the applications (e.g. the link between
applications A and C).

Fig. 4.4: Re-Routing of Service Requests

4.3 Objectives of CORDET Framework

In general terms, the goal of the CORDET Framework is to foster software reusability in
the development of service-oriented embedded control applications.

With a service-oriented concept, an application is speci�ed in terms of the services it o�ers
to other applications and of the services it needs from other applications and the services
are in turn speci�ed by the commands and reports which implement them.

In this perspective, the CORDET Framework supports reusability in the following ways:

1. It provides a formal de�nition of the abstract (implementation-independent) concept
of commands and reports,

2. It speci�es the components (the CORDET Components) which implement the abstract
command and report concepts and the CORDET Standard Services, and

3. It allows services of general applicability for a speci�c domain to be pre-de�ned and
to be available as building blocks for the development of applications in that domain.

Each of the above three points is discussed in greater detail in a dedicated sub-section below.

c©2019 P&P Software GmbH. All Rights Reserved. 16

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

4.3.1 De�nition of Command and Report Concepts

The �rst objective of the CORDET Framework is to provide a formal de�nition of the
abstract command concept and of the abstract report concept.

This is done by building behavioural models of commands and of reports which:

1. capture the aspects of the behaviour of commands and reports which is common to
all commands and reports independently of the de�nition and implementation of a
concrete command or report, and

2. identify the adaptation points where service- and implementation-speci�c behaviour
can be added.

An example may clarify the de�nition given above. In section 9.1.2, the concept of Accep-
tance Check for commands is introduced. An acceptance check is a check that is performed
upon incoming commands to determine whether the command can be accepted or whether
it should be rejected. The abstract concept of command includes the following behavioural
property: �an incoming command shall be considered for execution by a service provider
only if it has passed its Acceptance Check�. This property is part of the abstract command
concept because it is common to all commands. The content of the Acceptance Check (i.e.
the type of check that is done on a speci�c incoming command) is, however, not part of the
abstract command concept because it depends on the concrete service to which a command
belongs.

Thus, the behavioural model for commands must guarantee that a successful Acceptance
Check is a pre-condition for the execution of a command and it must identify the content
of the Acceptance Check as an adaptation point for the command.

Note that the de�nition of an abstract command and report concept allows the speci�cation
of services to be standardized and it therefore is a precondition for the second and third
objectives of the CORDET Framework.

The abstract command concept and the abstract report concept are de�ned in, respectively,
sections 9.1 and 9.2.

4.3.2 De�nition of CORDET Components

The second objective of the CORDET Framework is to specify the components which im-
plement the abstract command and report concepts (the CORDET Components). These
components are intended for deployment in service-oriented applications. More speci�cally,
the CORDET Components cover, on the service user side, the sending of commands and
the reception and distribution of reports and, on the service provider side, the processing of
incoming commands and the generation of reports.

The CORDET Framework only speci�es the CORDET Components but does not implement
them. The speci�cation is, however, done using the FW Pro�le and it therefore consists
of a complete behavioural model. An implementation could in principle be automatically
generated from the model.

The CORDET Framework de�nes the behavioural models for the service components. Mul-
tiple implementations can be derived from these models. All implementations are func-
tionally equivalent (because they implement the same behavioural model) but they dif-
fer in the choice of implementation language, of implementation technology, or of other

c©2019 P&P Software GmbH. All Rights Reserved. 17

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

implementation-level aspects.

Note that the CORDET components are framework-level components. Hence, application
developers may have to specialize them further before using them. Two approaches are
possible in this respect: (a) the application takes over an existing implementation of the
CORDET components and specializes them, or (b) the application specializes the models
of the CORDET Framework and then implements the specialized models.

4.3.3 De�nition of Standard Services

The third objective of the CORDET Framework is to allow sets of standard services to be
de�ned. These services are intended to cover functionalities which are common to applica-
tions within a certain domain. The standard services are therefore o�ered as building blocks
for the applications in that domain: an application in the domain is speci�ed and built as a
combination of standard services (which are re-used) and application-speci�c services (which
are developed for each speci�c application).

The standard services are de�ned by de�ning their commands and reports and the commands
and reports are de�ned as specializations of the abstract command and report concepts
(see section 4.3.1). Thus, a standard service is de�ned by �closing� the adaptation points
identi�ed in the abstract command and report concepts.

The CORDET Framework promotes a hierarchical de�nition of services as illustrated in
�gure 4.5. At the top layer, there is the abstract de�nition of commands and reports.
This de�nition is entirely generic and applicable to all services in all application. At the
intermediate level, standard services are de�ned which capture concrete behaviour which is
common to a large number of applications. These standard services could be de�ned either
by the CORDET Framework itself or by organizations which identify commonalities among
the applications of interest to them. Finally, at the bottom level, end-applications de�ne
their own services which are entirely speci�c to their needs. The application-level services
may be either taken over from the standard services or they may be created as instantiations
of the generic service concept (if they are entirely application-speci�c).

Fig. 4.5: Hierarchical De�nition of Services

c©2019 P&P Software GmbH. All Rights Reserved. 18

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

4.4 Objectives of C2 Implementation

The CORDET Framework is speci�ed in reference [CR-SP] as an implementation-independent
framework. The C2 Implementation is a C-language implementation of the framework in
the sense that it provides C implementations of the CORDET Components.

The CORDET Framework supports the development of service-oriented applications at spec-
i�cation level by providing concepts which facilitate the speci�cation of such applications.
The C2 Implementation supports the development of the same applications at implementa-
tion level by providing pre-de�ned components which facilitate the speci�cation of the same
applications.

4.5 Relationship To Packet Utilization Standard (PUS)

The Packet Utilization Standard or PUS is an application-level interface standard for space-
based applications. It is speci�ed in reference [PS-SP]. In spite of its origin in the space
industry, the PUS is suitable for a wide range of embedded control applications. In view of
its long heritage and its proven ability to cover the interface needs of mission-critical systems
of distributed applications, the PUS has been used as a basis for the CORDET Framework
in the sense that the service concept on which the CORDET Framework is based (see section
4.2) is the same as the service concept speci�ed by the PUS.

In order to understand the degree of overlap between the PUS and the CORDET Framework,
it is helpful to identify and contrast their respective concerns (the remainder of this section
can be omitted by readers without a background in the space industry).

The PUS has two concerns: (a) it standardizes the semantics of the commands and reports
which may be sent to or received from an application, and (b) it standardizes the external
representations of these commands and reports (i.e. it speci�es the layout of the packets
which carry the commands and reports). The CORDET Framework shares the �rst concern
in the sense that it uses the same service concept as the PUS but it does not share the
second concern because it does not specify the external representation of commands and
reports. Instead, the CORDET Framework speci�es their internal representation (i.e. it
prede�nes components to encapsulate commands and reports within an application) and
it treats their serialization to, and de-serialization from, physical packets as an adaptation
point to be resolved at application level.

Thus, the CORDET Framework can be used to instantiate applications which are PUS-
compliant but it is not restricted to PUS-compliant applications because it could be used to
instantiate an application which uses a di�erent external representation for its commands
and reports than is speci�ed by the PUS.

Table 4.1 summarizes the concerns of the CORDET Framework and of the PUS.

Table 4.1: Concerns of CORDET Framework and of PUS

Concern Coverage in CORDET Framework and PUS

Service Concept CORDET Framework uses the same service concept as the PUS.

External
Representation of
Commands and
Reports

The PUS speci�es the external representation of its commands
and reports (i.e. it speci�es the layout of the packets carrying
the commands and reports). The CORDET Framework does not
specify the external representation of its commands and reports.

c©2019 P&P Software GmbH. All Rights Reserved. 19

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

Concern Coverage in CORDET Framework and PUS

Internal
Representation and
Handling of
Commands and
Reports

The PUS does not specify how its commands and reports should
be represented and handled inside an application. The CORDET
Framework speci�es the components representing the commands
and reports in an application and the components required to
handle them within that application.

In addition to the service concept, the PUS also de�nes the concept of application process
which is matched in the CORDET Framework by the concept of application. The two
concepts, though overlapping, have slightly di�erent meanings. In the PUS, an application
process is a source of reports and a sink for commands (see section 4.2.1 of reference [PS-
SP]). In the CORDET Framework, an application is a node within a CORDET service-
based distributed system. A CORDET application may therefore be both a source and a
destination for both commands and reports.

Generally speaking, a CORDET application may contain several PUS application processes.
In order to allow multiple PUS application processes to be mapped to a single CORDET
application, the CORDET Framework has introduced the concept of group. Commands and
reports in an application must belong to a group. A PUS application process may thus be
represented within a CORDET application by a group. This is done by de�ning a group
for each application process and by allocating all the commands and reports belonging to
an application process to the same group. CORDET systems which do not aim at PUS
compliance will normally not need the group concept and may just de�ne one single group
to which all commands and reports in the system belong by default.

4.6 Middleware Layer

The CORDET Framework is an application-level framework and its domain is the man-
agement of services. Service messages encapsulating commands and reports are exchanged
between applications. The mechanism through which these messages are sent from one ap-
plication to another is outside the scope of the framework. The framework assumes that a
middleware layer is present which can be used to send and receive messages to and from
other applications.

Commands and reports travel on the middleware as packets. A packet is an ordered sequence
of bytes that contains all the information required to reconstruct a report or command. The
layout of command and report packets is not speci�ed by the CORDET Framework. An
example of command and packet layout is speci�ed in reference [PS-SP].

The process whereby a command or report is transformed into its packet is called serializa-
tion. The inverse process whereby a command or report is interpreted and the equivalent
report or command is reconstructed is called deserialization.

The assumptions made by the framework about the middleware are speci�ed in section 10.1.
The general concept is shown in �gure 4.6. The CORDET Framework only covers the yellow
boxes shown in the �gure which represent the service-aware parts of a system.

c©2019 P&P Software GmbH. All Rights Reserved. 20

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

Fig. 4.6: Applications and Middleware

5 State Machine and Procedure Model

The C2 Implementation implements the speci�cation of the CORDET Framework given in
reference [CR-SP]. The behaviour of the CORDET Framework is speci�ed through state
machines and procedures. The semantics of the state machines and procedures in reference
[CR-SP] is that of the FW Pro�le of reference [FW-SP]. The FW Pro�le is a restriction of
UML. It retains a simple but unambiguous subset of the UML features. Its state machines
match the functional part of UML's state machines and its procedures match the functional
part of UML's activity diagrams.

The C2 Implementation uses the C1 Implementation of reference [FW-SP]. This is a library
of C-language functions which implement the state machine and procedure concepts of the
FW Pro�le. The C2 Implementation wraps all calls to functions of the C1 Implementation.
Hence, in most cases, users will not need to interact with C1 Implementation functions.

Syntactically, a state machine in the C2 Implementation is represented by a variable of type
FwSmDesc_t. This type is a pointer to a structure (the state machine descriptor) which holds
all the information required to describe the state machine (its states and pseudo-states, its
actions, its guards, and its transitions) and its current state.

Similarly, a procedure in the C2 Implementation is represented by a variable of type FwPrDesc_-
t. This type is a pointer to a structure (the procedure descriptor) which holds all the in-
formation required to describe the procedure (its nodes, its actions, and its guards) and its
current state.

Users do not need to understand the internal structure of either the state machine or pro-
cedure descriptor.

5.1 State Machine Extension

The C1 Implementation supports an extension mechanism for state machines which is sim-
ilar to the inheritance-based extension mechanism of object-oriented languages. The C2
Implementation relies on this extension mechanism.

This section presents a brief overview of the state machine extension mechanism. More
details can be found in reference [FW-SP].

A state machine (the base state machine) can be extended to create a new state machine
(the derived state machine). Initially, after being created, a derived state machine is a clone
of its base (it has the same states with the same actions linked by the same transitions with
the same actions and guards as the base state machines). The derived state machine can
then be con�gured by performing one or more of the following operations:

c©2019 P&P Software GmbH. All Rights Reserved. 21

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

• Overriding one or more of its actions

• Overriding one or more of its guards

• Embedding new state machines in its states

The extension mechanism is useful where there is a need to de�ne a large number of state
machines which share the same topology (same set of states, of choice pseudo-states, and of
transitions) but di�er either in their actions, or in their guards, or in the internal behaviour
of their states.

As an example consider the CORDET Components. All these components share the same
initialization and reset logic which is described in section 6 but they di�er from each other
in the speci�c actions and checks which they perform when they are initialized or reset.
The C2 Implementation accordingly de�nes a base state machine to capture the generic
behaviour of all components (see �gure 6.1) and then extends this base state machine to
create the state machines representing speci�c component types.

Using an object-oriented terminology, one could say that the C2 Implementation o�ers a
base class implementing the generic initialization and reset behaviour of all components
and it o�ers derived classes to represent the initialization and reset behaviour of speci�c
component types.

Note, �nally, that the C1 Implementation also supports an extension mechanism for proce-
dures as well as for state machines. This procedure extension mechanism is not used in the
C2 Implementation and is therefore not discussed further in this document.

c©2019 P&P Software GmbH. All Rights Reserved. 22

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

6 Component Model

The C2 Implementation is organized as a set of adaptable components. The components
provided by the C2 Implementation are called Framework Components. A Framework Com-
ponent consists of:

• A state machine derived2 from the Base State Machine of �gure 6.1;

• The procedures which are started or executed by this state machine;

• Any other procedure which supports the operation of this state machine.

The Base State Machine de�nes the process through which a component is initialized and
con�gured. Thus, the de�nition of a Framework Component implies that all Framework
Component share the same initialization and reset logic.

Fig. 6.1: Base State Machine

The logic of the Base State Machine is as follows. Initially, after being instantiated, frame-
work components are in state CREATED. The hosting application is then expected to
provide to each component the information it needs to perform its initialization. The type
of this information is component-speci�c. After the necessary information has been pro-
vided, the application sends an Init command to the component. The component responds
by running its Initialization Procedure. This procedure is responsible for initializing the
component and is de�ned in �gure 6.2.

The Initialization Procedure is based on an Initialization Check and an Initialization Action.
Both the check and the action are adaptation points which must be de�ned for each individ-
ual component. The Initialization Check normally checks that all parameters required for
the component initialization have legal values. The Initialization Action is only performed
if the Initialization Check was successful. This action normally creates all data structures
required by the component and it performs other initialization actions as required. The
Initialization Action can either fail or succeed.

The Initialization Procedure terminates in one single cycle with an outcome of either �Suc-
cess� of �Failure�. Only the �Success� outcome is nominal and leads to the component making
a transition to state INITIALIZED.

2The term "derived" is used here in the sense of section 5.1

c©2019 P&P Software GmbH. All Rights Reserved. 23

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

After successful initialization, the application provides to the component the information
required to con�gure it and then sends a Reset command to it. The component responds
by running its Reset Procedure. This procedure is responsible for con�guring the component
and is de�ned in �gure 6.2.

The Reset Procedure is based on a Con�guration Check and a Con�guration Action. Both
the check and the action are adaptation points which must be de�ned for each individual
componet. The Con�guration Check normally checks that all parameters required for the
component con�guration have legal values. The Con�guration Action is only performed if
the Con�guration Check was successful. This action normally initializes the value of all
data structures required by the component and it performs other con�guration actions as
required. The Con�guration Action can either fail or succeed.

The Reset Procedure terminates in one single cycle with an outcome of either �Success� of
�Failure�. Only the �Success� outcome is nominal and leads to the component making a
transition to state CONFIGURED.

Fig. 6.2: Initialization and Reset Procedures

State CONFIGURED is the normal operational state of a component. In this state, the
component executes its Execution Procedure. This procedure must be entirely de�ned at
application level.

A component can be reset at any time by sending it command Reset. Nominally, this results
in the component executing again its con�guration actions and re-entering its CONFIG-
URED state. However, if any of the component parameters are found to have non-nominal
values or if any of the con�guration actions fail, then the component makes a transition to
state INITIALIZED. This is a non-nominal situation.

Thus, the distinction between initialization actions and con�guration actions is that the
former are actions that, nominally, are performed only once during the life of an application
whereas the latter are actions which may be performed more than once.

Note that there is no distinction between the actions that are performed when a component
is con�gured for the �rst time during application start-up and the actions that are performed
when a component is reset at run-time. This is intentional because resetting a component

c©2019 P&P Software GmbH. All Rights Reserved. 24

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

should bring it to the same state in which it was when the application had completed its
start-up.

All framework components implement the behaviour de�ned by the Base State Machine.
In general, the �meaningful� behaviour of a framework component is de�ned within the
CONFIGURED state. This �meaningful� behaviour is de�ned either by implementing an
Execution Procedure or by embedding a state machine within the CONFIGURED state.

Components are shut down by sending them command Shutdown. This command results
in the shutdown action being executed on the component. This action undoes the e�ects
of the component initialization. Note that components can only be shutdown from state
CONFIGURED. This is because the Shutdown operation models an orderly shutdown which
should only be performed after an application has successfully completed its start-up.

The C2 Implementation provides default implementations for the actions and checks of the
Initialization and Reset Procedures and for the Execution Procedure:

• The default Initialization Check always returns "success".

• The default Initialization Action sets the action outcome to "success" and then returns.

• The default Con�guration Check always returns "success".

• The default Con�guration Action sets the action outcome to "success" and then re-
turns.

• The default Execution Procedure executes the same empty action node at every cycle.

These defaults may be overridden when the Base Component is extended to create other
Framework Components. Application developers will normally never use a Base Component
directly (they only use components derived from the Base Component).

6.1 Component Hierarchy

Figure 6.3 show the components o�ered by the C2 Implementation in their hierarchical
relationship. The Base Component at the top of the hierarchy encapsulates the Base State
Machine. This component is not used directly. It only serves as a base from which the other
components are derived.

Table 6.1 lists the components o�ered by the C2 Implementation. Each component is
described in a dedicated section of this document. Each component is implemented in a
dedicated C-module. The rightmost column in the table gives the name of the C module.

c©2019 P&P Software GmbH. All Rights Reserved. 25

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

Fig. 6.3: Component Hierarchy

Table 6.1: List of Framework Components

Name Function Within Framework C-Module

Base Base component from which all framework com-
ponents are derived. See section 8.1.

CrFwBaseCmp

InStream Reception of incoming commands and reports
from communication middleware. See section
10.3.3.

CrFwInStream

OutStream Serializazion of outgoing commands and reports
to the communication middleware. See section
10.3.1.

CrFwOutStream

InReport Encapsulation of an incoming report. See section
18.

CrFwInRep

InCommand Encapsulation of an incoming command. See sec-
tion 17.

CrFwInCmd

OutComponent Encapsulation of an outgoing command or report.
See section 12.

CrFwOutCmp

InFactory Dynamic creation of InCommands and InRe-
ports. See section 6.2.

CrFwInFactory

OutFactory Dynamic creation of OutComponents. See sec-
tion 6.2.

CrFwOutFactory

InLoader Loading and re-routing of incoming commands
and reports. See section 16.

CrFwInLoader

OutLoader Loading of out-going command and reports into
an OutStream. See section 13.

CrFwOutLoader

InManager Execution and processing of incoming commands
and reports. See section 19.

CrFwInManager

c©2019 P&P Software GmbH. All Rights Reserved. 26

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

Name Function Within Framework C-Module

OutManager Processing of outgoing commands and reports.
See section 14.

CrFwOutManager

InRegistry Tracking of the state of incoming commands and
reports. See section 20.

CrFwInRegistry

OutRegistry Tracking of the state of outgoing commands and
reports. See section 15.

CrFwOutRegistry

6.2 Component Implementation

Each component is implemented in either one single C module or in a small number of C
modules. The modules implementing a component are gathered in a dedicated sub-directory
which carries the name of the component. Thus, for instance, the modules implementing
the Base Component are stored in a sub-directory called: src/CrFramework/BaseCmp.

From a syntactical point of view, a Framework Component is represented by the descriptor
of its state machine (a variable of type FwSmDesc_t, see section 5). Thus, syntactically, all
framework components are of the same type (i.e. they are all represented by variables of
type FwSmDesc_t).

Framework Components are instantiated by factory functions which are provided by the
framework. A factory function is a function with a name either like: CrFwXxxMakeYyy or
like: CrFwXxxMake. The meaning of the strings 'Xxx' and 'Yyy' is discussed in section 8.1.

Components which are instantiated from the same factory function are said to be of the same
component type. Thus, each factory function de�nes a component type. Each component
instance carries a type identi�er which uniquely identi�es its type. The type identi�er can
be accessed with function CrFwCmpGetTypeId.

When a component instance is created, it is assigned an instance identi�er which uniquely
identi�es a component instance within the set of components of a certain type. The �rst
instance to be created by a factory function is assigned the instance identi�er of 0. The
second instance is assigned the instance identi�er 1. And so on. The instance identi�er can
be accessed with function CrFwCmpGetInstanceId.

There is a limited number of standard operations which can be performed on a framework
component (executing it, querying it for its state, etc). An operation is performed by calling
a function on the component. Table 6.2 lists the most common such functions.

Some of the functions listed in the table are only intended to operate upon a component
instance of a certain type. For instance, function CrFwInStreamGetPckt should only be
called with an argument representing an InStream component. This constraint cannot be
enforced statically because, as indicated above, all components have the same syntactical
type (they are all instances of type FwSmDesc_t). It is therefore the responsibility of the
application to enforce this constraint. The error arising when a function is called with a
component of the incorrect type is not handled by the C2 Implementation.

Although type checking is not possible statically owing to the limitations of the implemen-
tation language, it could be performed at run-time using the type information which every
component carries with itself. Thus, functions could be modi�ed or extended through a
wrapper to check that the argument which they receive is of the expected type and to raise
an error if this is not the case.

c©2019 P&P Software GmbH. All Rights Reserved. 27

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

Table 6.2: List of Framework Component Operations

Operation Description

CrFwCmpExecute(〈Inst〉) Execute the state machine of the component in-
stance Inst.

CrFwCmpInit(〈Inst〉) Initialize the Base State Machine of the component
instance Inst.

CrFwCmpReset(〈Inst〉) Reset the Base State Machine of the component
instance Inst.

CrFwCmpShutdown(〈Inst〉) Shutdown the Base State Machine of the compo-
nent instance Inst.

CrFwCmpIsInCreated(〈Inst〉) Return true if the Base State Machine of the com-
ponent instance Inst is in state CREATED.

CrFwCmpIsInInitialized(〈Inst〉) Return true if the Base State Machine of the com-
ponent instance Inst is in state INITIALIZED.

CrFwCmpIsInConfigured(〈Inst〉) Return true if the Base State Machine of the com-
ponent instance Inst is in state CONFIGURED.

CrFw〈Type〉〈Cmd〉(〈Inst〉) Send command Cmd to the state machine embedded
in state CONFIGURED of the component instance
Inst of type Type.

CrFw〈Type〉IsIn〈State〉(〈Inst〉) Return true if the state machine embedded in state
CONFIGURED of the component instance Inst of
type Type is in state State.

CrFwCmpGetInstanceId(〈Inst〉) Return the instance identi�er of the component in-
stance Inst.

CrFwCmpGetTypeId(〈Inst〉) Return the type identi�er of the component in-
stance Inst.

6.3 Component Data

A component instance is a variable of type FwSmDesc_t. This type is de�ned by the C1
Implementation (see reference [FW-SP]). It represents a pointer to the state machine de-
scriptor.

The state machine descriptor consists of two parts (see �gure 6.4). The �rst part (in yellow
in the �gure) is de�ned by the C1 Implementation and is the same for all state machines.
This part holds the information about the state machine topology (its states, pseudo-states
and transitions), its actions and guards, and its current state. The last �eld of this �rst
part of the state machine descriptor is a pointer to the component data (shown in light blue
in the �gure).

The component data is the second part of the state machine descriptor. It consists of a data
structure of type CrFwCmpData_t. This data structure is in turn divided into two parts. The
upper segment holds the data which are common to all framework components, namely:

• The component instance identi�er

• The component type identi�er

• The outcome of the last action executed by the component

• The pointers to the Initialization, Reset and Execution Procedures of the component

c©2019 P&P Software GmbH. All Rights Reserved. 28

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

(see �gure 6.1 � it is recalled that these procedures are common to all framework
components)

The lower segment of the component is a pointer to the component-speci�c data (shown
in green in the �gure) namely data which are only used by components of a certain type.
Syntactically, this type-speci�c data is implemented as a pointer to void which must be
cast to a pointer to a structure. The type of the structure depends on the component type.
These structure types are de�ned in CrFwConstants.h.

Fig. 6.4: Component Data

c©2019 P&P Software GmbH. All Rights Reserved. 29

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

7 Adaptation Model

The C2 Implementation o�ers a set of generic components which application developers can
use to build their applications. These components must be adapted to �t the needs of the
end applications. The points where the component behaviour can be adapted are called
Adaptation Points.

The Adaptation Points are therefore the points where application developers may modify the
pre-de�ned behaviour of the framework components. In some cases, the C2 Implementation
pre-de�nes a default value for an Adaptation Point which application developers may either
take unchanged or may modify. In other cases, no default behaviour is de�ned at framework
level.

Four types of Adaptation Points (AP) are supported by the C2 Implementation:

• De�ne Constant: a framework component uses a #DEFINE constant whose value may
be overridden by application developers.

• De�ne Function: a framework component uses a function pointer and application
developers must provide an implementation for the missing function (or, if available,
may choose to use the default implementation provided at framework level)

• Implement Interface: the framework de�nes an interface as a C header �le and appli-
cation developers must provide an implementation for it.

• De�ne Type: a framework component uses a variables of a type de�ned as a typedef

and application developers may override the default type de�nition.

The adaptable part of the framework is located in the /cr/src/CrConfigTestSuite direc-
tory of the C2 Implementation delivery (see section 3. This directory holds: (a) a number
of header �les which de�ne all the #DEFINE constants and function pointers of the frame-
work; and (b) a number of C body �les which implement the interfaces which are left
open at framework level. Thus, during the framework instantiation process, application
developers adapt the framework components by updating the content of the �les in the
/cr/src/CrConfigTestSuite directory. The initial content of these �les in the C2 Imple-
mentation delivery is that used for the Test Suite of the C2 Implementation (see 3.6).

Appendix A lists the adaptation points of the framework component. Their detailed de-
scription is in the Doxygen documentation of the header and interface �les which implement
the adaptation points.

Where applicable, the doxygen comments attached to the #DEFINE constants and function
pointers also identify their default values. For the implementation of the interface �les, only
test stubs are provided as default by the framework.

The default de�nitions of the typedef should be suitable for the vast majority of applica-
tions. Hence, in most cases, application developers may ignore them.

Manipulations of function pointers is fraught with dangers in C. It is therefore important
to stress that, in the C2 Implementation, function pointers are exclusively used within
the framework components (where their use has been extensively checked and validated).
Application developers will normally not have to use the framework function pointers and
are therefore protected from the attendant risks.

Adaptation is done at compile-time only. During the framework instantiation process, the

c©2019 P&P Software GmbH. All Rights Reserved. 30

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

application developer closes the framework's adaptation points (or, where appopriate, takes
over the default values de�ned at framework level). The choices made at this time cannot
be modi�ed at run-time: the C2 Implementation provides no mechanism to re-con�gure the
framework dynamically. This limitation is dictated both by reasons of CPU and memory
e�ciency and by the desire to enhance static predictability of behaviour.

c©2019 P&P Software GmbH. All Rights Reserved. 31

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

8 Application Start-Up and Shut-Down

The application start-up process is divided into two stages: initialization and con�guration.
The initialization stage covers actions which are performed only at start-up time and which
cannot be repeated until the application (or a part of it) is shutdown. The con�guration
stage covers actions which are performed at start-up time but which may also be performed
at a later stage if there is a need to reset either the entire application or a part of it.

In the CORDET Framework document, the term shutdown is used to designate the orderly
shutdown of an application or of a component. Obviously, applications and components
may also undergo an emergency shutdown. This is entirely uncontrolled and is not covered
in any way by the CORDET Framework.

The start-up and shutdown processes are speci�ed at two levels: at the level of individual
components and at the level of the entire application which are described in, respectively,
sections 6 and 8.2.

Before they are initialized and con�gured, components must be instantiated. Most com-
ponents required by an application are instantiated as part of that application start-up
(early component instantiation). In some cases, components may need to be instantiated
during the application's normal operation (late component instantiation). The two forms of
components instantation are discussed in section 8.1.

8.1 Component Instantiation

Components may be instantiated either early or late. Early instantiation takes place as part
of the application start-up. This is required by the logic of the Application State Machine
of section 8.2.

Late instantiation can take place at any time during the application's normal operation (i.e.
while the Application State Machine of section 8.2 is in state NORMAL). Late instantiation
is only foreseen for components which encapsulate commands or reports. These components
must be created during the normal operation phase of an application because commands
and reports are sent and received dynamically by an application. All other components are
instantiated during the application start-up phase (early instantiation).

Component instantiation (both early and late) is done through factory functions which
are provided by the framework. For components subject to early instantiation, factory
functions have names like CrFwXxxMake where 'Xxx' is the name of the component type.
Thus, for instance, the factory function which generates InStream components is called
CrFwInStreamMake.

Only a �xed and statically pre-de�ned number of instances of components can be instanti-
ated statically. If only one instance may be instantiated (singleton components), the factory
function CrFwXxxMake takes no argument. The �rst time it is called, it creates the singleton
instance. Subsequent calls return the same instance.

If N instances may be instantiated (with N greater than 1), the factory function CrFwXxxMake
takes as argument an integer in the range 0 to N-1. The �rst time the function is called with
an argument i, the function creates the (i+1)-th instance of the component. Subsequent
calls with the same argument value return the same instance. An out-of-range value of the
argument results in the function returning NULL. If this is an error situation, it must be

c©2019 P&P Software GmbH. All Rights Reserved. 32

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

handled by the caller (i.e. the factory function itself does not perform any error handling
for an out-of-limit argument).

For non-singleton components, the maximum number of instances which can be created is
an adaptation point.

The memory resources for the components subject to early instantiation are allocated
through calls to malloc. This is acceptable because these calls are only performed in the ap-
plication start-up phase and for a �xed and statically pre-de�ned number of times. Hence, it
is possible to guarantee by static analysis that all malloc calls will succeed and predictability
of behaviour is thus ensured (see also discussion in section 21).

The instantiation of a component subject to early instantiation is irreversible: the resources
which are allocated to the component will only be released if the application is terminated.
Note in particular that the Shutdown Procedure of the Application Start-Up State Ma-
chine (see section 8.2) does not release the resources claimed during the early component
instantiation process.

For components subject to early instantiation, factory functions are provided by factory com-
ponents and have names like CrFwYyyMakeXxx where 'Xxx' is the name of the component
type and 'Yyy' is the name of the factory component. Thus, for instance, components encap-
sulating incoming commands are generated by the factory function CrFwInCmdFactoryMakeInCmd
which belongs to the factory component InCmdFactory.

The CORDET Framework de�nes two factory components: the OutFactory to instantiate
components encapsulating out-going commands and reports and the InFactory to instantiate
component encapsulating incoming commands and reports (see the overview in sections 11.1
and 11.2. The C2 Implementation implements these factories in modules CrFwOutFactory
and CrFwInFactory.

In addition to the Make function which creates a new component instance, factory com-
ponents also o�er Release functions with names like CrFwYyyReleaseXxx. The Release

functions take a component instance as argument and reclaim the resources allocated to
that component instance.

As part of their initialization, factory components pre-allocate a pool of memory. When
they receive a Make request, they allocate memory for the component-to-be-instantiated
from this pool. The memory is released when the user of the component instance calls
Release. The memory allocation algorithm is deterministic. Each factory can only create
a �xed number of component instances (the factory's capacity). A Make request at a time
when all factory instances are already in use will fail by returning NULL. The capacity of a
factory is an adaptation point.

Note that, if a failure of the Make operation represents an error, this must be handled by
the user of the factory. The factory itself does not perform any error handling.

8.2 Application Start-Up

The CORDET Framework de�nes the Application State Machine of �gure 8.1 to model the
start-up and shutdown logic of an application.

When the application is created, the Application State Machine is in state START_UP.
In this state, the Application Start-Up Procedure is executed. This procedure is entirely

c©2019 P&P Software GmbH. All Rights Reserved. 33

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

de�ned at application level but is subject to two constraints: (a) the procedure must in-
clude the instantiation, initialization and con�guration of all components subject to early
instantiation, and (b) the procedure may only terminate if successful con�guration of all
components subject to early instantiation is con�rmed (i.e. if all these components are in
state CONFIGURED).

Normal operation takes place in state NORMAL. In particular, the services provided by
an application to its users are only guaranteed to be available when the application is in
state NORMAL and it is only from this state that the application makes use of the services
provided by other applications. Thus, in state NORMAL, an application may assume that
its service interfaces are all operational.

An application can be reset by sending command Reset to its Application State Machine.
This causes a transition to state RESET where the Application Reset Procedure is executed.
This procedure is entirely de�ned at application level but is subject to two constraints:
(a) the procedure must include the sending of the Reset command to all currently insta-
tiated components, and (b) the procedure may only terminate if all currently instantiated
components are in state CONFIGURED.

It follows from the logic outlined above that, when the application is in state NORMAL, all
its statically instantiated components are guaranteed to be correctly con�gured (i.e. they
are guaranteed to be in state CONFIGURED).

The Application Start-Up Procedure and the Application Reset Procedure will normally share
much behaviour but they may not coincide because there may be some actions which are
only executed once when an application is started up (such as, for instance, the initialization
of all application components).

Finally, the orderly shutdown of an application is performed by sending command Shutdown

to the Application State Machine. This triggers a transition to state SHUTDOWN where
the Application Shutdown Procedure is executed. This procedure is entirely de�ned at
application level but is subject to one constraint: the procedure must include the sending
of the Shutdown command to all currently instantiated components.

Fig. 8.1: Application State Machine

Applications may (and normally will) de�ne embedded state machines in the states shown in
�gure 8.1. In particular, applications normally have several operational states which would
appear as sub-states of NORMAL.

The C2 Implementation implements the Application State Machine in module CrFwAppSm.
The three procedures controlled by the Application State Machine are not provided by the
C2 Implementation because they are application-speci�c. The C2 Implementation provides
three header �les CrFwAppStartUpProc.h, CrFwAppResetProc.h, and CrFwAppShutdownProc.h

c©2019 P&P Software GmbH. All Rights Reserved. 34

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

which de�nes the point of access to the three procedures. Application developers should
provide implementations for these three header �les as part of the framework instantiation
process.

Also as part of the framework instantiation process, application developers may want to add
behaviour to the four states of the Application State Machine by embedding state machines
within these states. Embedding of state machines is done using function FwSmEmbed de�ned
by the C1 Implementation (see reference [FW-SP]).

c©2019 P&P Software GmbH. All Rights Reserved. 35

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

9 Command and Report Concepts

This section describes the command and report concepts assumed by the CORDET Frame-
work and implemented by the C2 Implementation.

This section considers commands and reports at the abstract level only. The commanding
and reporting concepts described here are therefore applicable to any command or report,
irrespective of the speci�c service to which they belong or of the speci�c activities which
the command triggers or of the speci�c information which the report carries. Concrete
commands and reports are de�ned by applications according to their needs.These concrete
commands and reports are de�ned as specializations of the generic command and report
concepts described in the present section.

9.1 Command Concept

Each command belongs to a service. Within that service, the command is identi�ed by the
sub-type (a positive integer). Thus, a command is fully identi�ed by a pair [x,y] where 'x'
is the identi�er of the service to which the command belongs (the service type, see section
4.2) and 'y' is the identi�er of the command within the service (the command sub-type).

Commands are types which are instantiated at run-time. A command is generated by a
service user in order to trigger the execution of certain actions by the service providers.
Thus, a command instance begins its life when the application on the service user side (the
user application) decides that it wishes to issue a request to the application on the service
provider side (the provider application).

A command is sent by the user application to the provider application where it triggers the
execution of certain actions. Before being sent to the provider application, the command
is con�gured. Through the con�guration process, the command acquires the information
it will need to execute its actions. The command's actions in the provider application are
executed in a sequence of steps which may extend over time. Both the sending of the
command to its destination and the execution of its actions in the provider application are
conditional upon certain checks being passed. The command encapsulates both the actions
that must be executed and the conditional checks that determine whether the command is
sent and whether its actions are executed.

The same command instance may be sent to its destination more than once. This models
the situation where a user is issuing periodic requests to a service provider. In this case, the
content of the command is updated every time the command is sent to its destination. It is
a logical error to re-send a command instance to its destination before the actions triggered
by the previous execution of the same command have completed.

A command is de�ned by its attributes, its conditional checks, and its actions.

Attributes designate characteristics that are entirely de�ned by their value. Actions and
conditional checks designate executable functionalities that are associated to the command.
Both actions and conditional checks are executed by the command as a result of changes
in its internal state. The conditional checks are used to determine whether and when the
command actions are executed.

The next three subsections further de�ne the command attributes, the command conditional
checks, and the command actions. The last sub-section describes the lifecycle of a command.

c©2019 P&P Software GmbH. All Rights Reserved. 36

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

9.1.1 The Command Attributes

An attribute is a characteristics that is entirely de�ned by its value. A command has the
following attributes:

• Service Type: Each command contributes to implementing a service. This attribute
identi�es the service that the command implements.

• Command Sub-Type: Each service is implemented by several commands. This
attribute identi�es the type of the command within a certain service.

• Command Identi�er: A command may exist in two distinct applications (the user
application which sends the command and the provider application which receives it).
This attribute uniquely identi�es the command instance within both applications and
throughout the life of both applications.

• Destination Commands are generated by a user application for a provider appli-
cation. This attribute identi�es the provider application for which the command is
intended.

• Source Commands are generated by a user application for a provider application.
This attribute identi�es the user application which issues the command.

• Time Stamp: The time when the user application makes the request to send the
command to its destination.

• Group Commands sent by a user application to the same destination are allocated
to a group. This attribute identi�es the group to which the command belongs. The
concept of group is primarily relevant to applications which aim at PUS-compliance
(see section 4.5).

• Sequence Counter Every time a user application issues a command belonging to
a certain destination group, it increments a counter. The sequence counter attribute
holds the value of this counter. The sequence counter can be used by the recipient
application to check whether any commands addressed to it have been lost.

• Acknowledge Level Command execution goes through four stages: acceptance,
start, progress, and termination (see section 5.1.4). This attribute determines whether
successful completion of each of these stages should be reported to the sender of the
command. Note that failure to complete a stage is reported unconditionally.

• Progress Step Identi�er On the service provider side, a command is executed in a
sequence of progress steps. Each progress step is identi�ed by a positive integer (but
note that step identi�ers are not necessarily in sequence). This attribute holds the
identi�er of the current step. A command must have at least one step. This attribute
is only meaningful on the service provider side.

• Command Parameters Some commands may require parameters to fully specify
the actions and checks that they encapsulate. The �Command Parameters� attribute
holds the value of these parameters. This attribute consists of an ordered sequence of
items of primitive type.

• Discriminant The number and type of command parameters in a command instance
is not necessarily determined by the command type (i.e. di�erent instances of the same
command type may have di�erent sets of command parameters). The discriminant is
a command parameter which determines the number and type of the other command
parameters.
Thus, the layout of a command instance is fully determined by the triplet: [x,y,z]
where 'x' is the identi�er of the service to which the command belongs (the service
type), 'y' is the identi�er of the command within the service (the command sub-type),

c©2019 P&P Software GmbH. All Rights Reserved. 37

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

and 'z' is the discriminant.
The discriminant is an optional attribute. Command types which have no parameters,
or which have a �xed set of parameters, have no discriminant.

• CRC A command carries a checksum which is set by the command's sender and
which the recipient of the command can use to verify the integrity of the command's
transmission.

9.1.2 The Command Conditional Checks

A conditional check is an executable functionality which returns an enumerated value. The
enumerated value reports the outcome of the check. Conditional checks are performed as
part of the processing of a command. Their outcome determines whether and when the
command actions are preformed. Conditional checks must have zero logical execution time.
This restriction allows them to be mapped to guards in state machines.

Some checks are performed on the user's side (i.e. prior to the command being issued by
the user application); others are performed on the provider's side (i.e. after the command
has been received by the provider application).

The following conditional checks are de�ned for a command on the service user side:

• Enable Check This check is performed when the user application makes a request
to send a command to the service provider. The enable check determines whether the
command instance is enabled or disabled. If the command instance is disabled, then
the command is aborted. If instead the command instance is enabled, it remains in a
pending state until the ready check authorizes it being sent to its destination.

• Ready Check This check is performed on a pending command instance that has
passed its enable check. The ready check determines when the command instance is
sent to its destination. The command instance remains pending until the ready check
is passed. When the ready check is passed, the command instance may be sent to its
destination.

• Repeat Check This check is performed on a command instance after it has been sent
to its destination. The check returns either "repeat" or "no repeat". In the former
case, the command instance is updated and sent again to its destination. In the latter
case, it is terminated.

On the service provider side, the following conditional checks are de�ned for a command:

• Acceptance Check The acceptance check is performed when the command instance
is received by its destination. If the acceptance check is passed, then the command
remains pending and can be further processed by its recipient. If the acceptance check
is not passed, then the command instance is aborted.

• Ready Check This check is performed on a pending command instance that has
passed its acceptance check. The ready check determines when the execution of the
command starts. As long as the ready check is not passed, the command remains
pending. When the ready check is passed, the command instance attempts to start
execution.

9.1.3 The Command Actions

Command actions are executable functionalities which encapsulate the actions to be per-
formed by the command. Command actions are executed depending on the outcome of

c©2019 P&P Software GmbH. All Rights Reserved. 38

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

the command conditional checks. Command actions must have zero logical execution time.
This restriction allows them to be mapped to actions in state machines.

The following action is de�ned for a command on the service user side:

• Update Action Through this action, the command acquires the information which
it requires to execute its action on the service provider application. This action is
executed before the command is sent to its destination. If the command is sent more
than once (i.e. if its repeat check returns "repeat" one or more times), then the
Update Action is performed repeatedly every time the command must be sent to its
destination.

The following actions are de�ned for a command on the service provider side:

• Start Action The start action is executed after the start check has been passed. The
start action encapsulates one-o� initialization actions that must be performed at the
beginning of a command's execution. The start action has an outcome which is either
�success� or �failed�. If the outcome of the start action is �failed�, the command is
aborted.

• Progress Action Commands execute in one or more execution steps. The progress
action encapsulates the actions performed in one execution step. The progress action
is executed the �rst time after the start action has terminated and it is then executed
again until either it fails or it completes.
The progress action has two outcomes: a completion outcome which can be either
"completed" or "not completed" and a success outcome which can be either "success"
or "failed". If the completion outcome is "completed", then all execution steps have
been completed and the termination action is executed. If, instead, it is "not com-
pleted", then another execution step will be executed. The success outcome determines
the kind of acknowledge reports which are generated for the progress action.
Finally, the progress action updates the progress step identi�er. A "progress step" is
a set of logically related execution steps which are executed in sequence.

• Termination Action The termination action is executed after all the progress steps
have been successfully executed. The termination action encapsulates one-o� �naliza-
tion actions that must be performed before the command is terminated. The termi-
nation action has an outcome which is either �success� or �failed�. If the outcome of
the termination action is �failed�, the command is aborted.

• Abort Action If a command is aborted (i.e. if it fails its acceptance check, or its
start action faisl, or its progress action fails, or its termination action fails) then it
executes its abort action. The abort action thus encapsulates the �nalization actions
to be performed in case of a command failure.

9.1.4 Command Lifecycle

A command instance begins its life on the user side when the user application makes a
request for the command instance to be sent to the provider application. Nominally, on
the user side, the command can be in one single state PENDING. This corresponds to the
state of a command that has passed its enable check and is waiting for its ready check to
authorize the transfer of the command to the provider application.

On the provider side, the command instance passes through four states: ACCEPTED,
STARTED, PROGRESS, and TERMINATED. The command states are entered in sequence
as the command is executed. The PROGRESS state can be entered more than once to

c©2019 P&P Software GmbH. All Rights Reserved. 39

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

represent the fact that some commands execute actions which extend over time and which
are therefore broken into several steps.

To each command state one check and one action may be associated. The checks determine
whether a state can be entered or exited. For instance, if the acceptance check fails, then
the command cannot be executed. The actions encapsulate the activities to be performed
when the command enters a certain state. For instance, the start action de�nes the actions
to be executed when the command is started. Actions have an outcome which determines
the next step in the execution of the command.

On the provider side, a change in the state of a command is marked by the generation of
an Acknowledge Report. Acknowledge Reports are used to notify the sender of a command
of a change in the state of the command. Four kinds of Acknowledge Reports are de�ned
corresponding to the four states that a command may have in a provider application:

• Acceptance Acknowledge Report to notify the command sender of the outcome of the
acceptance check.

• Start Acknowledge Report to notify the command sender of the outcome of the start
action.

• Progress Acknowledge Report to notify the command sender of the outcome of a
progress step.

• Termination Acknowledge Report to notify the command sender of the outcome of the
termination action.

The sending of an acknowledge report to a command sender is done unconditionally in the
following cases: (a) the acceptance check has not been passed, (b) the start action has failed,
(c) the progress action has failed, or (d) the termination action has failed. Note that all
of these cases result in the command being aborted. Thus, the sending of an acknowledge
report is done unconditionally whenever a check or action results in a command being
aborted. For instance, if the start action of a command fails, a Start Acknowledge Report
is sent to the command sender to notify it that the command has failed to start execution
and has consequently been aborted.

In all other cases (namely when the acceptance check is passed, or the start action, or the
progress action, or the termination action are successful), the sending of the acknowledge
report to the command sender is conditional upon the value of the Acknowledge Level
attribute of the command (see section 9.1.1). Thus, for instance, the command sender
can set the Acknowledge Level attribute of a certain command such that only successful
acceptance and successful termination of the command are reported.

The Progress Acknowledge Report is only sent at the end of a progress step. A progress step
is deemed to have ended when the previous execution of the progress action has resulted in
the progress step identi�er being updated.

Figure 9.1 shows the nominal lifecycle of a command in an informal notation. In summary,
the CORDET Framework pre-de�nes the logic to handle the transitions between the com-
mand states. It does this by de�ning the logic to manage the execution of the command
checks and of the command actions but it leaves the de�nition of the content of the actions
and checks open.

The lifecycle outlined above may be repeated more than once for the same command in-
stance. Repetition is determed by the outcome of the Repeat Check. The Repeat Check is

c©2019 P&P Software GmbH. All Rights Reserved. 40

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

performed at the end of the lifecycle depicted in �gure 9.1. If it returns "no repeat", then
the command instance is destroyed. If instead, the check returns "repeat", then the content
of the command is updated and thze command is re-sent to its destination where it repeats
the lifecycle of �gure 9.1.

Fig. 9.1: Command Lifecycle (Informal Notation)

9.1.5 Mapping to C-Level Constructs

The C2 Implementation maps commands to software-level components as follows: out-
going commands are mapped to OutComponent components which are implemented in the
C module CrFwOutCmp (see section 12); incoming commands are mapped to InCommand
components which are implemented in the C module CrFwInCmd (see section 17). Table 9.1
shows how the attributes, conditional checks, and actions of commands are mapped to C-
level constructs in the C2 Implementation. Note that, in most cases, the mapping depends
on whether the command is out-going (i.e. the host application is a user application) or
incoming (i.e. the host application is a provider application).

Table 9.1: Mapping of Commands to C-Level Constructs

Name Mapping to C-Level Construct

Service Type
Attribute

ServType attribute in CrFwOutCmp and CrFwInCmd modules. Value set
when component is created by its factory and accessible through getter
function.

Command
Sub-Type
Attribute

ServSubType attribute in CrFwOutCmp and CrFwInCmd modules. Value set
when component is created by its factory and accessible through getter
function.

Command
Identi�er
Attribute

InstanceId attribute inherited from base component CrFwbaseCmp. Value
set when component is created by its factory and accessible through getter
function.

Destination
Attribute

Dest attribute in CrFwOutCmp, accessible through getter and setter func-
tions. Attribute not explicitly present in CrFwInCmd since the destination
of an InCommand is, by de�nition, the host application.

Source
Attribute

Src attribute in CrFwOutCmp and CrFwInCmd modules. Value set when
component is created by its factory and accessible through getter function.

Time Stamp
Attribute

TimeStamp attribute in CrFwOutCmp module. Value accessible and con-
trollable through getter and setter functions. Attribute is not present in
CrFwInCmd module.

Group
Attribute

Group attribute in CrFwOutCmp and CrFwInCmd modules. Value accessible
and controllable through getter and setter functions in the CrFwOutCmp

module and in read-only mode through a getter function in the CrFwInCmd
module.

c©2019 P&P Software GmbH. All Rights Reserved. 41

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

Name Mapping to C-Level Construct

Sequence
Counter
Attribute

SeqCnt attribute in CrFwInCmd module. Value set when the component is
created by its factory and accessible through getter function. Attribute is
not present in CrFwOutCmp module since the sequence counter of out-going
commands is set at the time the command is sent out.

Acknowledge
Level
Attribute

AckLevel attribute in CrFwOutCmp and CrFwInCmd modules. Value con-
trollable and accessible through setter and getter functions in CrFwOutCmp

module but only accessible in read mode in CrFwInCmd module.

Discriminant
Attribute

Discriminant attribute in CrFwOutCmp and CrFwInCmd modules. Value
set when component is created by its factory and accessible through get-
ter function. Update possible through a setter function in CrFwOutCmp

module.

Command
Parameter
Attributes

These attributes are application-speci�c.

Enable
Check

Function implementing the Enable Check Operation for an out-going com-
mand speci�ed through a function pointer in the CR_FW_OUTCMP_-
INIT_KIND_DESC initializer.

Ready
Check

Function implementing the Ready Check Operation for an out-going com-
mand speci�ed through a function pointer in the CR_FW_OUTCMP_-
INIT_KIND_DESC initializer. Function implementing the Ready Check
Operation for an incoming command speci�ed through a function pointer
in the CR_FW_INCMD_INIT_KIND_DESC initializer.

Repeat
Check

Function implementing the Repeat Check Operation for an out-going com-
mand speci�ed through a function pointer in the CR_FW_OUTCMP_-
INIT_KIND_DESC initializer.

Acceptance
Check

The part of the acceptance check which veri�es validity of the com-
mand type and availability of resources is implemented in the Load Com-
mand/Report Procedure of the InLoader (see section 16). The command-
speci�c part of the acceptance check is implemented in the Validity Check
Operation speci�ed through a function pointer in the CR_FW_INCMD_-
INIT_KIND_DESC initializer.

Update
Action

Function implementing the Update Action Operation for an out-going com-
mand speci�ed through a function pointer in the CR_FW_OUTCMP_-
INIT_KIND_DESC initializer.

Start Action Function implementing the Start Action Operation for an incoming com-
mand speci�ed through a function pointer in the CR_FW_INCMD_-
INIT_KIND_DESC initializer.

Progress
Action

Function implementing the Progress Action Operation for an incoming
command speci�ed through a function pointer in the CR_FW_INCMD_-
INIT_KIND_DESC initializer.

Termination
Action

Function implementing the Termination Action Operation for an incoming
command speci�ed through a function pointer in the CR_FW_INCMD_-
INIT_KIND_DESC initializer.

Abort
Action

Function implementing the Abort Action Operation for an incoming com-
mand speci�ed through a function pointer in the CR_FW_INCMD_-
INIT_KIND_DESC initializer.

c©2019 P&P Software GmbH. All Rights Reserved. 42

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

9.2 Report Concept

Each report belongs to a service. Within that service, the report is identi�ed by the sub-type
(a positive integer). Thus, a report is fully identi�ed by a pair [x,y] where 'x' is the identi�er
of the service to which the report belongs (the service type, see section 4.2) and 'y' is the
identi�er of the report within the service (the command sub-type).

Commands and reports within the same service have di�erent sub-types. Thus, it is not
possible for a command and a report to be identi�ed by the same [type, sub-type] pair.

Reports are types which are instantiated at run-time. A report is generated by a service
provider which sends it to a service user in order to provide it with information about its
internal state. Thus, a report instance begins its life when the application on the service
provider side (the provider application) decides that it wishes to send some information to
the application on the service user side (the user application).

On the service provider side, a report is con�gured with the information that it must carry
and then it is sent to its destination (a user application). The sending of the report to
the user application may be conditional on certain checks being passed. On the user side,
the report performs an update action. The report encapsulates the data to be sent, the
conditional checks which determine whether the report is sent, and the update action.

The same report instance may be sent to its destination more than once. This models the
situation where a service provider is issuing periodic reports to a service user. In this case,
the content of the report is updated every time it is sent to its destination.

Thus, a report is de�ned by its attributes, its conditional checks and an update action.

Attributes designate characteristics that are entirely de�ned by their value. The update
actions and conditional checks designate executable functionalities that are associated to
the report. The conditional checks determine whether a report is sent to its destination and
the update action determines what the report does with the data it carries in its destination.

The next three subsections further de�ne the report attributes, the report conditional checks
and the report update action. The last sub-section describes the lifecycle of a report.

9.2.1 The Report Attributes

An attribute is a characteristics that is entirely de�ned by its value. A report has the
following attributes:

• Service Type Each report contributes to implementing a service. This attribute
identi�es the service that the report implements.

• Report Sub-Type Each service is implemented by several reports. This attribute
identi�es the type of the report within a certain service.

• Report Identi�er A report may exist in two distinct applications (the provider
application which sends the report and the user application which receives it). This
attribute uniquely identi�es the report instance within both applications and through-
out the life of both applications.

• Destination Reports are generated by a provider application for a user application.
This attribute identi�es the user application for which the report is intended.

• Source Reports are generated by a provider application for a user application. This
attribute identi�es the provider application which issues the report.

c©2019 P&P Software GmbH. All Rights Reserved. 43

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

• Time Stamp The time when the provider application makes the request to send the
report to its destination.

• Group Reports sent by a provider application to the same destination are allocated
to a group. This attribute identi�es the group to which the report belongs. The
concept of group is primarily relevant to applications which aim at PUS-compliance
(see section 4.5).

• Sequence Counter Every time a provider application generates a report belonging
to a certain source group, it increments a counter. The sequence counter attribute
holds the value of this counter. The sequence counter can be used by the recipient
application to check whether any reports addressed to it have been lost.

• Report Parameters Some reports may require parameters to fully specify the ac-
tions and checks that they encapsulate. The �Report Parameters� attribute holds the
value of these parameters. This attribute consists of an ordered sequence of items of
primitive type.

• Discriminant The number and type of report parameters in a report instance is not
necessarily determined by the report type (i.e. di�erent instances of the same report
type may have di�erent sets of report parameters). The discriminant is a report
parameter which determines the number and type of the other report parameters.
Thus, the layout of a report instance is fully determined by the triplet: [x,y,z] where
'x' is the identi�er of the service to which the report belongs (the service type), 'y'
is the identi�er of the report within the service (the report sub-type), and 'z' is the
discriminant. The discriminant is an optional attribute. Report types which have no
parameters, or which have a �xed set of parameters, have no discriminant.

• CRC A report carries a checksum which is set by the report's sender and which the
recipient of the report can use to verify the integrity of the report's transmission.

9.2.2 The Report Conditional Checks

A conditional check is an executable functionality which returns an enumerated value. The
enumerated value reports the outcome of the check. Conditional checks are performed as
part of the processing of a report in a provider application. Their outcome determines
whether and when the report is sent to its destination.

Conditional checks must have zero logical execution time. This restriction allows them to
be mapped to guards in state machines.

The following conditional checks are de�ned for a report on the service provider side:

• Enable Check This check is performed when the provider application makes a request
to send a report to the service user. The enable check determines whether the report
instance is enabled or disabled. If the report instance is disabled, then the report is
aborted. If instead the report instance is enabled, it remains in a pending state until
the ready check authorizes it being sent to its destination.

• Ready Check This check is performed on a pending report instance that has passed
its enable check. The ready check determines when the report instance is sent to its
destination. The report instance remains pending until the ready check is passed.
When the ready check is passed, the report instance may be sent to its destination.

• Repeat Check This check is performed on a report instance after it has been sent to
its destination. The check returns either "repeat" or "no repeat". In the former case,
the report instance is updated and sent again to its destination. In the latter case, it

c©2019 P&P Software GmbH. All Rights Reserved. 44

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

is destroyed.

On the service user side, the following conditional checks are de�ned for a report:

• Acceptance Check The acceptance check is performed when the report instance is
received by its destination. If the acceptance check is passed, then the report's update
action is executed. If the acceptance check is not passed, then the report instance is
aborted.

It should be noted that the conditional checks de�ned for a report on the provider side have
a similar semantics as the conditional checks de�ned for a command on the service user side
(see section 9.1.2). This similarity re�ects the fact that out-going commands are handled in
the same way as out-going reports.

9.2.3 The Report Actions

Report actions are executable functionalities which encapsulate the actions to be performed
by the command. Report actions are executed depending on the outcome of the report
conditional checks. Report actions must have zero logical execution time. This restriction
allows them to be mapped to actions in state machines.

The following action is de�ned for a report on the service provider side:

• Update Action Through this action, the report acquires the information which it
must carry to its destination. This action is executed before the report is sent to
its destination. If the report is sent more than once (i.e. if its repeat check returns
"repeat" one or more times), then the Update Action is performed repeatedly every
time the report must be sent to its destination.

The following action is de�ned for a report on the service user side:

• Update Action This action is executed on the user side after a report has been
received by a user application and has passed its acceptance check. A report carries
data to a user application. The Update Action determines what the report does with
these data on the user application.

As in the case of the report conditional checks, it should be noted that the action de�ned for
a report on the provider side have a similar semantics as the action de�ned for a command
on the service user side (see section 9.1.3). This similarity re�ects the fact that out-going
commands are handled in the same way as out-going reports.

9.2.4 Report Lifecycle

A report instance begins its life on the service provider side when the provider application
creates and con�gures the report instance and requests it to be sent to the user application.
Through the report con�guration process, the provider application de�nes the data that the
report must carry to its destination.

Nominally, on the provider side, the report can be in one single state PENDING. This
corresponds to the state of a report that has passed its enable check and is waiting for its
ready check to authorize the transfer of the report to the user application.

On the user side, the report executes its acceptance check. Tyically, this check encapsulates
syntactical checks which verify the integrity of the data carried by the report. If the check

c©2019 P&P Software GmbH. All Rights Reserved. 45

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

is passed, then the report's update action is executed. Typically, the update action might
consist in updating the value of selected variables in the user application to re�ect the arrival
of the report, or it might consist in storing a copy of the data carried by the report into a
repository. If the acceptance check is not passed, the report is simply dicarded.

The CORDET Framework de�nes the logic to manage the report lifecycle but it leaves the
de�nition of the content of the report and of its conditional checks open.

Figure 9.2 shows the nominal lifecycle of a report in an informal notation. In summary,
the CORDET Framework pre-de�nes the logic to handle the transitions between the report
states. It does this by de�ning the logic to manage the execution of the report checks and of
the report actions but it leaves the de�nition of the content of the actions and checks open.

The lifecycle outlined above may be repeated more than once for the same report instance.
Repetition is determed by the outcome of the repeat check. The repeat check is performed
at the end of the lifecycle depicted in �gure 9.1. If the check returns "no repeat", then the
report instance is destroyed. If instead, it returns "repeat", then the content of the report
instance is updated and re-sent to its destination where it repeats the lifecycle of �gure 9.2.

Fig. 9.2: Report Lifecycle (Informal Notation)

9.2.5 Mapping to C-Level Constructs

The C2 Implementation maps reports to software-level components as follows: out-going
reports are mapped to OutComponent components which are implemented in the C module
CrFwOutCmp (see section 12); incoming reports are mapped to InReport components which
are implemented in the C module CrFwInRep (see section 18). Table 9.2 shows how the
attributes, conditional checks, and actions of reports are mapped to C-level constructs in
the C2 Implementation. Note that, in most cases, the mapping depends on whether the
report is out-going (i.e. the host application is a provider application) or incoming (i.e. the
host application is a user application).

Table 9.2: Mapping of Reports to C-Level Constructs

Name Mapping to C-Level Construct

Service Type
Attribute

ServType attribute in CrFwOutCmp and CrFwInRep modules. Value set
when component is created by its factory and accessible through getter
function.

Report
Sub-Type
Attribute

ServSubType attribute in CrFwOutCmp and CrFwInRep modules. Value set
when component is created by its factory and accessible through getter
function.

Report
Identi�er
Attribute

InstanceId attribute inherited from base component CrFwbaseCmp. Value
set when component is created by its factory and accessible through getter
function.

Destination
Attribute

Dest attribute in CrFwOutCmp, accessible through getter and setter func-
tions. Attribute not explicitly present in CrFwInRep since the destination
of an InReport is, by de�nition, the host application.

c©2019 P&P Software GmbH. All Rights Reserved. 46

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

Name Mapping to C-Level Construct

Source
Attribute

Src attribute in CrFwOutCmp and CrFwInRep modules. Value set when
component is created by its factory and accessible through getter function.

Time Stamp
Attribute

TimeStamp attribute in CrFwOutCmp module. Value accessible and con-
trollable through getter and setter functions. Attribute is not present in
CrFwInRep module.

Group
Attribute

Group attribute in CrFwOutCmp and CrFwInRep modules. Value accessible
and controllable through getter and setter functions in the CrFwOutCmp

module and in read-only mode through a getter function in the CrFwInRep
module.

Sequence
Counter
Attribute

SeqCnt attribute in CrFwInRep module. Value set when the component is
created by its factory and accessible through getter function. Attribute is
not present in CrFwOutCmp module since the sequence counter of out-going
reports is set at the time the report is sent out.

Discriminant
Attribute

Discriminant attribute in CrFwOutCmp and CrFwInRep modules. Value
set when component is created by its factory and accessible through get-
ter function. Update possible through a setter function in CrFwOutCmp

module.

Report
Parameter
Attributes

These attributes are application-speci�c.

Enable
Check

Function implementing the Enable Check Operation for an out-going re-
port speci�ed through a function pointer in the CR_FW_OUTCMP_-
INIT_KIND_DESC initializer.

Ready
Check

Function implementing the Ready Check Operation for an out-going report
speci�ed through a function pointer in the CR_FW_OUTCMP_INIT_-
KIND_DESC initializer.

Repeat
Check

Function implementing the Repeat Check Operation for an out-going re-
port speci�ed through a function pointer in the CR_FW_OUTCMP_-
INIT_KIND_DESC initializer.

Acceptance
Check

The part of the acceptance check which veri�es validity of the report type
and availability of resources is implemented in the Load Command/Report
Procedure of the InLoader (see section 16). The report-speci�c part of the
acceptance check is implemented in the Validity Check Operation speci�ed
through a function pointer in the CR_FW_INREP_INIT_KIND_DESC
initializer.

Update
Action

Function implementing the Update Action Operation for an out-going re-
port speci�ed through a function pointer in the CR_FW_OUTCMP_-
INIT_KIND_DESC initializer. Function implementing the Update Ac-
tion Operation for an incoming report speci�ed through a function pointer
in the CR_FW_INREP_INIT_KIND_DESC initializer.

c©2019 P&P Software GmbH. All Rights Reserved. 47

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

10 Packet Interface

CORDET applications interact with each other by exchanging commands and reports.
Within an application, commands and reports are encapsulated in components but, when
they travel from one application to another (over some communication channel which is
provided by some middleware external to the applications themselves), they take the form
of packets (see section 4.6). A report or command packet is an ordered sequence of bytes
that contains all the information required to reconstruct a report or command.

Thus, the interface between two CORDET applications is packet-based. More precisely, an
application needs an out-going interface through which it can send to another application
a packet representing a command or a report and it needs an incoming interface through
which it can receive from other applications packets representing commands or reports.

The CORDET Framework assumes that a middleware is present which o�ers physical con-
nections through which two applications can send packets to each other. A physical connec-
tion then is a data channel provided by a middleware and capable of transporting packets
from one application to another application.

A CORDET system (namely a set of CORDET applications connected to each other by a
middleware) builds a set of logical connections on top of the physical connections o�ered by
the middleware. A logical connection allows two applications A1 and A2 to exchange packets
either directly through a physical connection linking A1 to A2 (in which case the logical
connection coincides with a physical connection) or through a chain of other applications
which are linked to each other and to A1 and A2 by physical connections. This is illustrated
in �gure 10.1. The �gure shows a CORDET system consisting of four applications (yellow
boxes in the �gure). The applications are linked to each other by three physical connections
(black lines in the �gure). In this system, the following kinds of logical connections might,
for instance, be de�ned:

1. A logical connection between applications A and B which is built upon physical con-
nection C1;

2. A logical connection between applications B and D which is built upon physical con-
nection C3;

3. A logical connection between applications A and C which is built upon physical con-
nections C1 and C2 and application B acting as re-routing node.

When a packet travels through an application en route to another application, it is said to be
re-routed. Packet re-routing is a function which is de�ned by the CORDET Framework and
is therefore supported by default by CORDET Systems. In �gure 10.1 a packet travelling
along a logical connection from application A to application C is re-routed by application
B.

This section speci�es the interfaces through which applications send packets to and receive
them from the middleware and it speci�es the re-routing logic which allows applications to
exchange packets even in the absence of a direct physical connection linking them.

10.1 Middleware Assumptions

Although, the CORDET Framework does not specify the middleware through which ap-
plications may exchange packets with each other, it assumes this middleware to satisfy
certain, very generic, assumptions. The next two sub-sections de�ne the assumptions made

c©2019 P&P Software GmbH. All Rights Reserved. 48

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

Fig. 10.1: Physical And Logical Connections

by the CORDET Framework on, respectively, out-going interfaces (interfaces through which
packets are sent to another application over a physical connection) and incoming interfaces
(interfaces through which packets are received from other applications over a physical con-
nection).

10.1.1 Out-Going Interface

An out-going interface is an interface through which an application sends packets to another
application over a physical connection provided by a middleware. The following assumptions
are made by the CORDET Framework about out-going connections:

A1 A connection may be in one of two states: AVAIL or NOT_AVAIL.

A2 If a connection is in state AVAIL, then it is capable of accepting at least one entire
packet for eventual transfer to its destination.

A3 A connection o�ers a non-blocking Send operation through which an application can
make a request for a packet to be sent to its destination.

A4 The Send operation either forwards a packet to its destination (if the middleware is
in state AVAIL when the Send request is made) or else it does nothing but notify the
caller that the packet cannot be forwarded (if the middleware is in state NOT_AVAIL
when the Send request is made).

A5 A connection may make a transition between the AVAIL and NOT_AVAIL states at
any time.

A6 A connection may be queried for its current state.

These assumptions correspond to a middleware which accepts packets one at a time and
which implements a potentially complex protocol to deliver them to their destination. This
protocol may include bu�ering of packets (to bridge periods of non-availability of the phys-
ical link), splitting of packets into smaller messages (to accommodate restrictions on the
maximum length of a transmission message), and re-sending of packets which have not been
successfully delivered (to ensure continuity of service).

These protocol complexities manifest themselves at the application level exclusively as tran-
sitions between states AVAIL and NOT_AVAIL (e.g. the middleware connection becomes
unavailable when the middleware bu�er is full, or when a packet has to be broken up into
messages which have to be sent separately, or when a packet has to be re-sent). Thus, the
application is shielded from protocol-level complexity and is only required to be able to

c©2019 P&P Software GmbH. All Rights Reserved. 49

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

handle periods of non-availability of the middleware connection.

Note also that there is no assumption that the middleware be able to signal a change of state
of a connection from NOT_AVAIL to AVAIL. Such a capability could be exploited by an
application but is not mandated by the CORDET Framework. Thus, applications are com-
patible both with a �polling architecture� where the middleware connection is periodically
queried for its availability status and with a �call-back architecture� where the application
waits to be noti�ed of the middleware's availability.

10.1.2 Incoming Interface

An incoming interface is an interface through which an application receives packets from
another application over a physical connection provided by a middleware. The following
assumptions are made by the CORDET Framework about incoming connections:

B1 A connection may be in one of two states: WAITING or PCKT_AVAIL.

B2 If a connection is in state PCKT_AVAIL, then there is at least one packet that is
ready to be collected by the application.

B3 A connection o�ers an operation through which a packet that is waiting to be collected
can be collected.

B4 A connection may make a transition from state PCKT_AVAIL to WAITING exclu-
sively as a result of the call to the operation to collect a packet.

B5 A connection may make a transition from state WAITING to PCKT_AVAIL at any
time.

B6 A connection may be queried for its current state.

These assumptions correspond to a middleware which implements a potentially complex
protocol for processing incoming packets. This protocol may include: the defragmentation
of packets which are transferred in several messages; the multiplexing of channels from
several packet sources; the generation of low-level acknowledgements for incoming packets;
the bu�ering of incoming packets.

These protocol complexities manifest themselves at the application level exclusively as tran-
sitions between state PCKT_AVAIL and WAITING (e.g. the middleware connection is in
state WAITING when no packet has arrived, or when messages are being spliced together
to compose a complete packet, or when an acknowledgement is being generated). Thus,
the application is shielded from protocol-level complexity and is only required to be able to
handle periods when no incoming packet is present.

Note also that there is no assumption that the middleware be able to signal a change of
state of a connection from WAITING to PCKT_AVAIL. Such a capability, if it exists,
can be exploited by an application but is not mandated by the CORDET Framework.
Thus, an application is compatible both with a �polling architecture� where the middleware
connection is periodically queried for the presence of incoming packets and with a �call-back
architecture� where the application waits to be noti�ed of the arrival of a packet.

10.2 Packet Implementation

At implementation level, a packet is an array of bytes. The C2 Implementation pre-de�nes
type CrFwPckt_t to represent packets.

The layout of packets is entirely de�ned at application level. The C2 Implementation spec-

c©2019 P&P Software GmbH. All Rights Reserved. 50

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

i�es an interface (in header �le CrFwPckt.h) through which a new packet can be created
and its various �elds can be accessed.

Packet creation is managed through two functions (CrFwPcktMake and CrFwPcktRelease)
which can be used to, respectively, create and release a packet. The creation function takes
as an argument the length of the packet. Function CrFwPcktIsAvail can be used to query
the interface for the availability of a packet of a given length. The implementation of these
functions is left open. In the simple case of an application developer who is not concerned
about dynamic memory allocation, these functions can be implemented simply as wrappers
for malloc and free. Other users who wish to avoid dynamic memory allocation operations
at run-time must implement their own memory management scheme.

For each command or report attribute, the packet interface CrFwPckt.h speci�es a function
to read and write the value of the attribute. The implementation of these functions depends
on the way the attributes of commands and reports are encoded in a packet. The imple-
mentation of these functions (i.e. the body �le CrFwPckt.c) must therefore be provided by
application developers. A stub implementation, which is used in the Test Suite of the C2
Implementation, is provided in the con�guration directory /cr/src/CrConfigTestSuite.

Since the framework provides one single interface for decoding and encoding packets, the
simplest option for application developers is to use the same layout for all packets used
by the application, irrespective of their type or of their destination or source. If this is
not possible, then the getter and setter functions of interface CrFwPckt.h must implement
logic which makes their outcome dependent on the content of the packet itself. Thus, for
instance, if di�erent packet sources use di�erent layouts, the getter functions will have to
inspect the source of a packet before deciding how to decode the value of a packet's attribute.
In the case of the setter functions, this approach requires that the order in which the packet
attributes are set be speci�ed. The only place in the CORDET Framework where packets are
con�gured is the function to create a new OutComponent (CrFwOutFactoryMakeOutCmp).
This function accordingly guarantees the order in which the packet attribute are set (the
order is: packet report/command �ag (which determines whether the packet holds a report
or a command), packet source (i.e. the host application), packet group, packet type, packet
sub-type, and packet discriminant).

10.3 Packet Interface Management

The packet interface concept for CORDET applications is illustrated in �gure 10.2 using an
information notation.

The management of the out-going packet interface is performed by one or more OutStream
components. An OutStream component encapsulates an out-going interface through which
packets are sent to a certain destination. An application has one OutStream component for
each destination to which it may send packets.

The management of the incoming packet interface is performed by an InStream component.
An InStream component encapsulates the incoming interface through which an application
receives packets from a certain packet source. An application has one InStream component
for each source from which it may receive packets.

Packets which are received by an InStream in application A and which have application A
as their destination are made available to the internal components of application A. Packets
which are received by an InStream in application A and which have an application other
than A as their destination are instead re-routed. This means that they are handed over to

c©2019 P&P Software GmbH. All Rights Reserved. 51

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

an OutStream for forwarding to another application (either their �nal destination or another
intermediate application on the way to their �nal destination).

As an example, consider again the CORDET System of �gure 10.1 and consider �rst the
case of a packet which is sent by application A to application B over connection C1. This
packet is placed on connection C1 by an OutStream in application A and is received by an
InStream in application B. Since the destination of the packet is application B itself, the
InStream makes the packet available to the internal components of application B.

Consider next the case of a packet which is sent by application A to application C and which
must therefore be re-routed by application B. This packet is initially placed on connection
C1 by an OutStream in application A and is received by an InStream in application B.
This InStream recognizes that the packet destination is not B and therefore re-routes it by
directly handing it over to an OutStream which places it on connection C2. At the other end
of this connection, the packet is received by an InStream in application C which recognizes
that the packet has arrived at its �nal destination and therefore makes it available to the
internal components of application C.

Fig. 10.2: Packet Interface Concept

10.3.1 The OutStream Component

This component models the out-going interface through which packets representing either
commands (in a service user application) or reports (in a service provider application) are
sent to their destination. The OutStream is therefore located at the interface between an
application and the middleware layer.

An application A may send packets to several destinations. The packets may either originate
within application A itself or they may have originated in some other application (the latter
is the case if application A is re-routing the packets). Depending on the characteristics
of the middleware, only one OutStream component may be present in application A with
the multiplexing of the out-going connections to the packet destinations being done in the
middleware, or several OutStream components may be present each handling packets to a
subset of destinations. If an application is sending internally generated packets to a certain
destination D and is also re-routing packets to the same destination D, then it must use the
same OutStream for both kinds of packets.

c©2019 P&P Software GmbH. All Rights Reserved. 52

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

The OutStreams are responsible for assigning the sequence counter attributes of out-going
packets generated by an application. Since sequence counters are incremented according
to a packet's group, all packets belonging to the same group must go through the same
OutStream.

The OutStream component extends the Base Component of section 6 and it therefore in-
herits the initialization and con�guration logic de�ned by the Base Component. In the
initialization and con�guration process, the OutStream is linked to the middleware. This
process is necessarily application-speci�c (because the middleware is not speci�ed by the
CORDET Framework). However, the CORDET Framework speci�es that an OutStream
component may only become con�gured (i.e. it may enter state CONFIGURED) after the
middleware connection has become available (it has entered state AVAIL). This ensures that
an OutStream only becomes con�gured after its middleware connection has terminated its
own initialization and con�guration process.

Fig. 10.3: The OutStream State Machine

In state CONFIGURED, the behaviour of an OutStream is described by the state machine
of �gure 10.3 (the OutStream State Machine). The state machine has two states: READY
and BUFFERING. State READY represents a situation where the connection is expected to
be available and the OutStream hands over packets to the middleware. State BUFFERING
represents a situation where the connection may be unavailable and where packets are
bu�ered without being handed over to the middleware.

The OutStream State Machine reacts to two commands: Send and ConnectionAvailable.
Command Send is issued by the host application when it wishes to send a packet to its des-
tination. If, at the time a Send request is made, the state machine is in state BUFFERING,
then the packet is enqueued in the Packet Queue.

The Packet Queue is an internal data structure where packets which are waiting to be sent
are stored. The size of the packet queue is �xed and is de�ned as part of the OutStream
con�guration. Attempts to enqueue a packet in a full queue are reported as errors.

The Packet Queue is a FIFO queue. This guarantees that the OutStream component de-
livers packets to the middleware in the same order in which it receives them from its host

c©2019 P&P Software GmbH. All Rights Reserved. 53

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

application.

If, instead, a Send request is made at a time when the OutStream is in state READY,
then an attempt is made to hand over the packet to the middleware. If this succeeds, the
OutStream remains in state READY. If instead the hand-over to the middleware fails, the
packet is enqueued and the OutStream makes a transition to state BUFFERING. Note that
the logic of the OutStream State Machine guarantees that, at entry into state READY, the
packet queue is empty.

The Send command may either fail or succeed. If it results in its packet being enqueued on
the Packet Queue, then the Send command succeeds (note that property P3 below ensures
that a packet which has been enqueued will eventually be handed over to the middleware).
If instead it results in its packet being lost because, at the time the Send command was
called, the Packet Queue was full, then the Send command fails.

Command ConnectionAvailable would typically be generated by the middleware when the
connection (or one of the connections) associated to the OutStream changes from NOT_-
AVAIL to AVAIL. This command is used to trigger the �ushing of the Packet Queue. When
the OutStream receives command ConnectionAvailable it empties the Packet Queue one
packet at a time until the queue is empty or the connection becomes unavailable.

The out-going packets which are handled by an OutStream may have two origins: (a) they
may have originated in the same application to which the OutStream belongs, or (b) they
may be re-routed packets which originate from some other application and which are using
the OutStream's application as a gateway on the way to their destination (see �gure 10.2).
In case (a), the OutStream is responsible for setting the sequence counter attribute of the
out-going packet. In case (b), by contrast, the packet's sequence counter attribute is already
set (it has been set by the application where the packet originated).

In case (a), the sequence counter is incremented according to the group to which an out-
going command or report belongs. Thus, an OutStream maintains an array of sequence
counters, one for each group to which its out-going commands or reports may belong. The
i-th element of this array holds the value of sequence counter which will be assigned by the
OutStream to the next out-going command or report belonging to the i-th group managed
by the OutStream. The sequence counters are initialized to 1 when the OutStream is reset
(i.e. the �rst value of sequence counter assigned to an out-going command or report after
the OutStream is reset is 1). If a command or report has an illegal group attribute, this is
reported as an error.

The OutStream is responsible for computing and setting the CRC of an out-going packet.
This can only be done after the sequence counter has been set (because the sequence counter
itself contributes to the value of the CRC).

The C2 Implementation implements the OutStream component in module CrFwOutStream.

10.3.2 The OutStreamRegistry Component

As discussed in section 10.3.1, for each command or report destination, one OutStream
component must be instantiated by an application. The CORDET Framework accordingly
de�nes an OutStreamRegistry component which encapsulates the link between the command
and report destinations and the associated OutStream.

Only one operation is de�ned at framework level for the OutStreamRegistry. The OutStreamGet

c©2019 P&P Software GmbH. All Rights Reserved. 54

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

operation lets a user retrieve the OutStream corresponding to a certain command or report
destination. The command or report destination is identi�ed by the value of the destination
attribute of the command or report (see sections 9.1.1 and 9.2.1).

If an invalid destination is provided to the OutStreamGet operation, nothing is returned by
the operation itself but this is not treated as an error by the OutStreamRegistry component.
If the use of an invalid destination represents an error, this must be handled by the user of
the OutStreamRegistry.

Since the range of potential command and report destinations is unknown at framework
level, the OutStreamGet operation is an adaptation point for the OutStreamRegistry. The
link between the command and report destinations and their OutStreams is a con�guration
parameter for the OutStreamRegistry.

Only one instance of the OutStreamRegistry should exist in an application.

The OutStreamRegistry is de�ned as an extension of the Base Component.

In the C2 Implementation, the OutStreamRegistry component is merged with the Out-
Stream component and is therefore implemented in module ../cordetfw/CrFwOutStream

(i.e. it is implemented in the same module which implements the OutStream component).
This module, in addition to de�ning the functions implementing the OutStream operations,
also de�nes function CrFwOutStreamGet to implement the OutStreamGet operation.

10.3.3 The InStream Component

The InStream component models the interface through which packets representing incoming
commands or reports are received by an application. The InStream component is therefore
located at the interface between an application and the middleware layer (see section 4.6).

An application A may receive packets from several sources. The packets may either have
application A as their destination or they may be intended for some other application.
In the latter case, application A is responsible for re-routing the packets. Depending on
the characteristics of the middleware, only one InStream component may be present in
application A with the multiplexing of the incoming connections from the packet sources
being done in the middleware, or several InStream components may be present each handling
packets from a subset of incoming connections.

Although several connections may be managed by the same InStream, a connection can only
send its packet to one InStream (i.e. a situation where the same connection is controlled
by several InStreams and several InStreams are therefore handling packets from the same
source is not allowed).

The InStreams are responsible for checking the sequence counter attributes of incoming
packets received by an application. Since sequence counters are incremented according to
a packet's group, all packets belonging to the same group must arrive through the same
InStream.

The InStream component is de�ned as an extension of the Base Component of section
6 and it therefore inherits the initialization and con�guration logic de�ned by the Base
Component. In the initialization and con�guration process, the InStream is linked to the
middleware. This process is therefore necessarily application-speci�c (because the middle-
ware is not speci�ed by the CORDET Framework). However, the CORDET Framework
speci�es that an InStream component may only become con�gured (i.e. it may enter state

c©2019 P&P Software GmbH. All Rights Reserved. 55

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

CONFIGURED) after the middleware connection has terminated its own initialization and
con�guration. This ensures that an InStream only becomes con�gured after its middleware
connection has terminated its own initialization and con�guration process.

Fig. 10.4: The InStream State Machine

In state CONFIGURED, the behaviour of an InStream is described by the state machine
of �gure 10.4 (the InStream State Machine). The state machine has two states: WAITING
and PCKT_AVAIL. State WAITING represents a situation where no incoming packets are
waiting to be collected by the host application. State PCKT_AVAIL represents a situation
where at least one incoming packet has been collected from the middleware and is now
waiting to be collected by the host application.

The InStream component stores packets it has collected from the middleware in the Packet
Queue. The Packet Queue is an internal InStream data structure where packets which have
been collected from the middleware are stored and where they remain available until the
application retrieves them. The size of the packet queue is �xed and is de�ned as part of
the InStream con�guration. Attempts to enqueue a packet in a full queue are reported as
errors.

The Packet Queue is a FIFO queue. This guarantees that the InStream component deliv-
ers packets to its host application in the same order in which it has collected them from
the middleware. The InStream State Machine reacts to two commands: GetPacket and
PacketAvailable. Command GetPacket is issued by the host application when it wishes
to collect an incoming packet. If the command is received when the state machine is in state
PCKT_AVAIL (namely when at least one packet is available in the Packet Queue), then
the command results in the oldest packet in the Packet Queue being returned to the caller.
If the packet thus returned is the last on the queue, the command triggers a transition to
state WAITING.

If the GetPacket command is received when the state machine is in state WAITING, the
command has no e�ect and returns nothing.

Command PacketAvailable would typically be issued under two conditions: (a) in response
to the middleware connection changing from NOT_AVAIL to AVAIL, or (b) periodically to
check whether any packets are available at the middleware interface. Case (a) corresponds
to a call-back architecture where the middleware alerts the application that a new packet has
arrived. Case (b) corresponds to a polling architecture where the application periodically
checks whether a new packet has arrived.

c©2019 P&P Software GmbH. All Rights Reserved. 56

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

Fig. 10.5: The Packet Collect Procedure

Reception of command PacketAvailable causes the Packet Collect Procedure of �gure 10.5
to be run. This procedure collects all packets currently available at the middleware. The
packets are stored in the InStream's Packet Queue.

Also as part of the processing of the PacketAvailable command, the Packet Collect Pro-
cedure checks the sequence counter attribute of incoming packets which have the host ap-
plication as their destination. To each InStream, a set of groups are associated. For each
group, the InStream maintains a sequence counter. When a packet is received which belongs
to that group, the InStream checks that its sequence counter has incremented by one with
respect to the previous packet in the same group. If the procedure �nds that the sequence
counter has not incremented by one, it reports the sequence counter error. An error is also
reported if the group attribute of an incoming packet does not correspond to one of the
groups managed by the InStream.

The sequence counter check is only done for packets which have the host application as their
destinations. Packets which are in transit (i.e. packets which must be re-routed to some
other application) do not undergo any check on their sequence counter. This logic ensures
that the sequence counter check is only performed once by the InStream that receives a
packet in the destination application of that packet.

The C2 Implementation implements the InStream component in module CrFwInStream.
This implementation follows the speci�cation of the CORDET Framework with one restric-
tion: an InStream component can only handle packets from one single packet source. Thus,
an application must instantiate one InStream for each source from which it may receive
packets. More precisely, the rules for deciding the number of InStreams in an application
are as follows:

c©2019 P&P Software GmbH. All Rights Reserved. 57

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

R1 If an application receives packets from source S1, then it must have a dedicated In-
Stream for source S1.

R2 If an application re-routes packets from source S2 to other destinations, then it must
have a dedicated InStream for source S2.

R3 If an application receives packets from a source S and also re-routes packets from the
same source S, then it must use the same InStream for both kinds of packets.

Thus, for each command or report source, one (and only one) InStream component must be
instantiated by an application. Function CrFwInStreamGet lets a user retrieve the InStream
corresponding to a certain command or report source.

If an invalid source is provided to the CrFwInStreamGet operation, nothing is returned by
the operation itself but this is not treated as an error by the CrFwInStreamGet operation.
If the use of an invalid packet source represents an error, this must be handled by the caller
of CrFwInStreamGet.

The collection of packets from the middleware is mediated by two functions which implement
two framework adaptation points: function CrFwPcktCollect_t implements the Packet
Collection Operation and function CrFwPcktAvailCheck_t implements the Packet Available
Check Operation.

The Packet Collect Operation (function CrFwPcktCollect_t) collects a packet from the
middleware. Its return value is a packet in the sense of section 10.2. The Packet Collect
Operation must therefore create the packet it returns using the CrFwPcktMake function.
Hence, the Packet Collect Operation only returns a packet if a command or report has
arrived at the middleware and if function CrFwPcktMake is capable of returning an empty
packet where the newly arrived command or report can be stored.

The Packet Available Check Operation (function CrFwPcktAvailCheck_t) can be used to
query the middleware for the availability of a packet to be collected. More precisely, if
this operation returns: 'a packet is available', then a call to the Packet Collect Operation
will return a non-NULL packet. Note that this means that the Packet Available Check
Operation must perform a double check: it must check whether a command or report has
been received by the middleware and it must verify whether the CrFwPcktMake function
would be able to return a packet capable of holding the newly arrived command or report.
The latter check can be done with function CrFwPcktIsAvail.

c©2019 P&P Software GmbH. All Rights Reserved. 58

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

11 Command and Report Management

This section describes the mechanisms which the CORDET framework makes available for
the management of commands and reports in a CORDET application. These mechanisms
are entirely independent of the concrete actions and checks attached to a speci�c command
or report. It is precisely this independent that makes it possible for the framework to provide
generic report and command handling components which can be reused by applications.

This section introduces the components which are responsible for the management of com-
mands and reports and describes their interrelationships. The following sections describe
each kind of component in greater detail with the exception of the InStream and OutStream
components which are already covered in sections 10.3.3 and 10.3.1 and of the factory com-
ponents which are already covered in section 6.2.

11.1 Management of Out-Going Commands and Reports

Out-going commands are commands in a user application (namely in an application which
sends commands to a service provider) and out-going reports are reports in a provider
application (namely in an application which sends reports to a service user).

Out-going commands and out-going reports are treated together because their management
is performed in the same way and is based on the following components:

• OutComponent This component models the generic behaviour of an out-going com-
mand or report. Concrete commands or report generated by an application are de�ned
as extensions of the base OutComponent component.

• OutFactory This is a component factory (in the sense of section 8.1) which pro-
vides uncon�gured instances of OutComponents to encapsulate out-going commands
or reports.

• OutLoader After an application has con�gured an OutComponent representing an
out-going command or report, it loads it into the OutLoader. This component is re-
sponsible for selecting the appropriate OutManager to process the out-going command
or report.

• OutManager This component is responsible for controlling an out-going command or
report until the OutComponent which encapsulates it is serialized to the OutStream
and sent to its destination as a packet.

• OutStream This component models the interface through which out-going commands
and reports are sent to their destination.

• OutRegistry This component acts as a registry for pending OutComponents. It
provides information about the state of the OutComponent to other parts of the host
applications.

Note that the OutFactory, OutLoader, and OutRegistry components are singletons and it is
therefore assumed that only one instance of each exists in an application. It is also assumed
that there is one (and only one) OutStream for each destination to which commands may
be sent (see usage constraints at the end of section 10.3.1).

The lifecycle of an out-going report or command is shown in �gure 11.1 using and informal
notation and can be summarized as follows:

1. When the host application decides that it must issue a command or a report, it asks the

c©2019 P&P Software GmbH. All Rights Reserved. 59

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

Fig. 11.1: Management of Out-Going Commands and Reports

OutFactory for an uncon�gured OutComponent instance to encapsulate the out-going
command or report.

2. The application con�gures the OutComponent and then loads it in the OutLoader.

3. The OutLoader selects an OutManager and loads the OutComponent into it. The
selection of the OutManager will often be based on the urgency with which the com-
mand or report must be issued (e.g. each OutManager component is characterized by
a certain priority level).

4. The OutManager component processes the out-going command or report. If the com-
mand or report is disabled, it is aborted and the component which encapsulated it
is returned to its factory (where it is either destroyed or is reused). If instead the
command or report is enabled, it remains pending in the OutManager until its ready
check indicates that the conditions are in place for it to be issued.

5. The report or command is issued by serializing its OutComponent to a packet which
is then handed over to the OutStream. The OutStream is responsible for sending the
packet to its destination.

6. After the OutComponent has been serialized and sent to its destination, the Out-
Manager evaluares the outcome of its Repeat Check. If this is equal to "repeat", the
content of the OutComponent is updated and the OutComponent is then processed
again as per point 4 above. If instead the repeat check had returned "no repeat",
processing of the OutComponent terminates and the OutComponent is returned to
its factory.

The C2 Implementation provides implementations for each of the CORDET components
discussed above. Table 6.1 shows the mapping to the C-modules which implement them.

11.2 Management of Incoming Commands and Reports

Incoming commands are commands in a provider application (namely in an application
which receives commands from a service user) and incoming reports are reports in a user
application (namely in an application which receives reports from a service provider).

c©2019 P&P Software GmbH. All Rights Reserved. 60

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

Incoming commands and incoming reports are treated together because their management
is performed in a similar way.

The management model speci�ed by the framework for incoming commands and reports is
based on the de�nition of the following components:

• InCommand This component models the generic behaviour of a command on a
provider application (namely of an incoming command). Concrete incoming com-
mands are de�ned as extensions of the base InCommand component.

• InReport This component models the generic behaviour of a report on a user ap-
plication (namely of an incoming report). Concrete incoming reports are de�ned as
extensions of the base InReport component.

• InStream This component models the interface through which incoming commands
and reports are received by an application.

• InFactory The InStream delivers an incoming command or incoming report as a
packet consisting of a stream of bytes which must be deserialized to create an InCom-
mand or InReport instance to represent it. The InFactory component encapsulates
the component instance creation process.

• InLoader This component is responsible for retrieving packets which become avail-
able at the InStreams. The InLoader may either forward an incoming packet (if its
destination is not the host application), or it may process it as an incoming report
(if the packet holds a report), or it may process it as an incoming command (if the
packet holds a command). The processing of incoming commands or reports is as
follows. The InLoader deserializes the packet and creates an InCommand or InReport
instance to represent it and then loads it into an InManager. The InManager will be
responsible for executing the InCommand or InReport.

• InManager This component controls the execution of an incoming command or in-
coming report until all its actions have been completed.

• InRegistry This component acts as a registry for pending InCommand and InReport.
It can provide information about their state to other parts of the applications.

Note that InFactory, InLoader, InRegistry and InStream are singletons and it is therefore
assumed that only one instance of each exists in an application.

The process through which an application processes an incoming command or incoming
report is shown using an information notation in �gure 11.2 and can be summarized as
follows:

1. The InStreams receive packets from other applications. The packets are collected from
the InStreams by the InLoader.

2. The InLoader checks the destination of the packet. If it is the host application itself
(namely the application within which the InLoader is running), it processes the packet
as described below. If it is another application, the InLoader forwards the packet to
another application (either its eventual destination or a routing application on the
way to its eventual application).

3. An incoming packet may represent either a command or a report. The InLoader
identi�es the type of the command or report and asks the InFactory to provide an
instance of an InCommand (if the packet represents a command) or of an InReport
(if the packet represents a report) of that type.

4. The InCommand or InReport are initially uncon�gured. They are con�gured by dese-

c©2019 P&P Software GmbH. All Rights Reserved. 61

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

Fig. 11.2: The Management of Incoming Commands and Reports

rializing the packet representing the incoming command or incoming report. Hence-
forth the incoming command or report is represented by the con�gured InCommand
or InReport instance.

5. The InLoader loads the command or report into an InManager. The InManager is
responsible for executing the command or report. In the case of incoming commands,
this may require several execution cycles. In the case of incoming reports, at most
one execution cycle is su�cient. Depending on the outcome of the conditional checks
associated to the incoming command or report, execution may result either in a normal
termination or in the command or report being aborted.

6. When the command or report has terminated execution or has been aborted, the
InManager returns the InCommand or InReport component instance that held it to
the InFactory.

7. The InRegistry is noti�ed of the arrival of incoming commands and reports and of
changes of their state. The Inregistry makes this information available to other parts
of the host application.

The C2 Implementation provides implementations for each of the CORDET components
discussed above. Table 6.1 shows the mapping to the C-modules which implement them.

c©2019 P&P Software GmbH. All Rights Reserved. 62

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

12 The OutComponent Component

The OutComponent component encapsulates an out-going command or an out-going report.
This component enforces the generic behaviour that is common to all out-going commands
and reports irrespective of their type and it provides access to their attributes.

The OutComponent component � like all other CORDET Framework components � is an
extension of the Base Component of section 6. Behaviour which is speci�c to the OutCom-
ponent component is de�ned by the state machine shown in �gure 12.1 (the OutComponent
State Machine). This state machine is embedded within the CONFIGURED state of the
Base State Machine.

Fig. 12.1: The OutComponent State Machine

When the OutComponent is retrieved from its factory, it is initialized and reset (depending
on the implementation, the Reset command may be issued either by the factory itself
or by the user application). After the OutComponent has been successfully reset, the
OutComponent State Machine is in state LOADED. The component then waits for the
Execute and Terminate commands which are sent to it by its OutManager (see section 14).

The OutComponent behaviour depends on the outcome of three checks. The Enable Check
veri�es whether the command or report it encapsulates is enabled or not. If it is enabled,
the check sets �ag isEnabled to true; if it is disabled, it sets �ag isEnabled to false. The
Ready Check veri�es whether the command or report is ready to be sent to its destination.
If it is ready to be sent, the check sets �ag isReady to true; otherwise it sets the �ag to
false. The Repeat Check veri�es whether the command or report should remain pending
after being sent to its destination. If the outcome of the Repeat Check is 'Repeat' (i.e. if
the OutComponent should be sent to its destination again), �ag isRepeat is set to true;
if the outcome is 'No Repeat' (i.e. if the OutComponent should not bet sent again to its
destination), �ag isRepeat is set to false. The three check operations are adaptation points.

At each execution, the OutComponent performs the Enable Check and if this declares the
OutComponent to be disabled, it makes a transition to state ABORTED. This marks the
end of the OutComponent's lifecycle.

At each execution, the OutComponent has a chance to be sent to its destination. This is
done when the OutComponent is declared to be both ready and enabled by its Ready Check
and Enable Check.

c©2019 P&P Software GmbH. All Rights Reserved. 63

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

The sending operation is performed by the Send Packet Procedure of �gure 12.2. The
Send Packet Procedure starts by performing the Update Action. Through this action, the
OutComponent acquires the information it must transfer to its destination. By default,
this action sets the time stamp attribute of the OutComponent. Applications may want to
extend this action to load the values of the OutComponent parameters. For this reason, the
Update Action is an adaptation point of the OutComponent.

The Send Packet Procedure then retrieves the destination of the OutComponent and then
interrogates the OutStreamRegistry to obtain the corresponding OutStream (recall that,
in an application, there is one instance of OutStream for each command or report desti-
nation). If an OutStream can be found (i.e. if the OutComponent's destination is valid),
the procedure serializes the OutComponent to generate a packet which is then handed over
to the OutStream. This ensures that the command or report will eventually be sent to its
destination. The serialization process is an adaptation point.

After serializing and handing over the OutComponent to its OutStream, the Send Packet
Procedure performs the Repeat Check. This determines whether the OutComponent should
be sent to its destination once more (the Repeat Check sets �ag isRepeat to true) or whether
its life is terminated (the Repeat Check sets �ag isRepeat to true). In the latter case, the
OutComponent will make a transition to TERMINATED.

If the OutStreamRegistry does not return any OutStream, then the procedure concludes
that the OutComponent's destination is invalid and it reports the fact. In this case, the
outcome of the Repeat Check is also forced to 'No Repeat' (i.e. �ag isRepeat is set to
false).

Fig. 12.2: The Send Packet Procedure

The OutComponent provides visibility over its internal state but it does not provide au-

c©2019 P&P Software GmbH. All Rights Reserved. 64

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

tomatic noti�cations in case of changes in its internal state. The OutComponent provides
access to the attributes of the command or report it encapsulates but it only prede�nes
dummy values for them. The set and value of command or report attributes is therefore an
adaptation point for the OutComponent.

The default implementation of the Enable Check uses one of the services provided by the
OutRegistry to determine the enable status of a command or report (see section 15).

The C2 Implementation implements the OutComponent component in module CrFwOutComponent.
Its adaptation points are de�ned in CrFwOutFactoryUserPar.h. This header �le allows the
application developer to de�ne the kinds of OutComponents which must be supported by
the application and to de�ne, for each kind of OutComponent, the functions which imple-
ment their Ready Check, their Enable Check, and their Serialization operation. The "kind"
of OutComponent is identi�ed by the triplet: [service type, command/report sub-type, dis-
criminant value].

OutComponents are instantiated dynamically by an application when it needs to generate
an out-going command or report. The instantiation is done by means of a make function
provided by the OutFactory. The argument to the make function is the OutComponent kind.
The release of the OutComponent is done by the framework at the time the OutComponent
is handed over to the OutStream.

c©2019 P&P Software GmbH. All Rights Reserved. 65

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

13 The OutLoader Component

After a user application has obtained an OutComponent component from an OutFactory,
it loads it into the OutLoader. This component is responsible for selecting the appropriate
OutManager to process the out-going command or report.

For this purpose, the OutLoader maintains a list of OutManagers (the List of OutMan-
agers or LOM). The LOM holds all the OutManagers which have been instantiated in an
application.

The OutLoader component o�ers one operation � the Load operation � to load an Out-
Component into an OutManager. When this operation is called, the OutLoader decides to
which OutManager in the LOM to load an OutComponent. The policy for selecting the
OutManager in the LOM is an adaptation point. After the OutComponent is loaded into
the selected OutManager, the procedure may activate the selected OutManager (i.e. it may
release the thread which is controlling the execution of the selected OutManager). This is
useful where there is a need to process the out-going command or report as soon as it is
loaded into the OutLoader (normally, the command or report would only be processed when
the OutManager is executed).

The Load operation is modelled by the procedure shown in �gure 13.1. A call to operation
Load causes this procedure to be started and executed. The procedure executes in one single
cycle and therefore terminates as part of the call to operation Load.

No facilities are de�ned for dynamically changing the set of OutManagers in the LOM.
Changes in the list of OutManagers can only be done by recon�guring and then resetting
the OutLoader component.

Fig. 13.1: The OutLoader Load Procedure

The C2 Implementation implements the OutLoader component in module CrFwOutLoader.
Its adaptation points are de�ned in CrFwOutLoaderUserPar.h. In most cases, the only
adaptation point for which a non-default implementation is required is the one covering the
de�nition of the function which selects the OutManager where an out-going command or

c©2019 P&P Software GmbH. All Rights Reserved. 66

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

report should be loaded.

By default, the initialization, reset and shutdown operations of the OutLoader are the same
as on the Base Component but these operations are implemented as adaptation points so
that the user has a chance to use them to initialize or reset the data structures which are
used to control the selection of the OutManager where an out-going command or report is
loaded.

c©2019 P&P Software GmbH. All Rights Reserved. 67

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

14 The OutManager Component

This component is responsible for maintaining a list of pending OutComponents and for
repeatedly executing them until they are serialized and sent to their destination. The list
of pending commands is called the Pending OutComponent List or POCL. The POCL has
a �xed size which is de�ned when the OutManager is initialized.

The OutManager component o�ers a Load operation through which an OutComponent can
be added to the POCL (see activity diagram in �gure 14.1). This operation is called by the
OutLoader of the previous section. The Load operation may fail if the list is full. In this
case, the OutComponent is released. This protects the application against resource leaks in
case of repeated Load failures.

The Load operation registers the newly loaded OutComponent with the OutRegistry using
its StartTracking operation (see �gure 15.1). Henceforth, and as long as the OutComponent
remains loaded in the OutManager, its state is tracked by the OutRegistry.

Fig. 14.1: The OutManager Load Procedure

The OutComponents loaded into the POCL must be fully con�gured (i.e. they must be
in state CONFIGURED). It is the responsibility of the user of the OutManager to ensure
that this constraint is complied with. Note that, since OutComponents are loaded into the
OutManager by the OutLoader (see previous section), this constraint must be enforced by
the host application when it loads an out-going command or report into the OutLoader.
Violation of this constraint will result in an OutComponent permanently remaining in the
POCL of the OutManager.

The OutManager maintains a counter of successfully loaded OutComponents. The counter
is initialized to zero when the OutManager is reset.

The order in which the items in the POCL are processed by the OutManager is unspeci�ed.

There is no mechanism to �unload� a pending OutComponent. The OutManager au-
tonomously returns an OutComponent to the OutFactory when the OutComponent has
been sent to its destination (i.e. when the OutComponent is in state TERMINATED) or
when it has been aborted (i.e. when the OutComponent is in state ABORTED).

c©2019 P&P Software GmbH. All Rights Reserved. 68

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

Fig. 14.2: The OutManager Execution Procedure

The OutManager component is de�ned as an extension of the Base Component of section 6.
It uses the Execution Procedure of the Base Component to process the pending commands.
The OutManager component processes the pending commands by sending them an Execute

command. After each Execute command, the state of the OutComponent is reported to
the OutRegistry using the latter Update function (see �gure 15.1). Commands which have
been aborted or have been sent to their destination are removed from the POCL and are
returned to the OutFactory. The Execution Procedure of the OutManager is shown in �gure
14.2.

Normally, the OutManager is embedded within a Real Time Container (see reference [FW-
SP]) which is responsible for executing it. Thus, an application that is required to process
out-going commands or reports at di�erent levels of priority should use several OutManagers
(one for each level of priority) and should allocate them to Real Time Containers with a
matching priority.

The C2 Implementation implements the OutManager component in module CrFwOutManager.
Its adaptation points are de�ned in CrFwOutManagerUserPar.h and only consist of the def-
inition of the number of OutManagers in the application and of the size of their queue of
pending OutComponents.

As noted above, at CORDET Framework level, there is no requirement covering the order in
which the OutComponents loaded into an OutManager are processed when the OutManager
is executed. The C2 implementation, however, enforces the following ordering constraint.

c©2019 P&P Software GmbH. All Rights Reserved. 69

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

If OutComponents C1 to Cn are successfully loaded into an OutManager through through
successive calls to its Load operation and if this sequence of Load operations is not inter-
rupted by an execution of the OutManager, then, when the OutManager is executed next,
the OutComponents C1 to Cn will be processed in the order in which they have been loaded.

c©2019 P&P Software GmbH. All Rights Reserved. 70

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

15 The OutRegistry Component

This component acts as a registry for out-going commands and reports (namely for com-
mands or report which have been loaded into an OutManager).

The OutRegistry is de�ned as an extension of the Base Component of section 6. It has two
functions: (a) it keeps track of an out-going command's or report's state; and (b) it stores
the out-going command's or report's enable state.

The OutRegistry maintains a list of the last N commands or reports to have been loaded
in all OutManagers in an application. The OutRegistry maintains the state of each such
command or report. The command's or report's state in the OutRegistry can have one of
the following values:

• PENDING: the command or report is waiting to be sent

• ABORTED: the command or report was aborted because it was disabled when it was
loaded

• TERMINATED: the command or report has been passed to the OutStream

The value of N (the maximum number of items which can be tracked by the OutRegistry)
is �xed and is an initialization parameter.

An OutComponent is �rst registered with the OutRegistry when it is loaded into the Out-
Manager through the latter Load operation. Subsequently, the information in the OutReg-
istry is updated by the OutManagers every time a command or report is executed. Normally,
a command's or report's state in the OutRegistry eventually becomes either ABORTED or
TERMINATED. The only situation where this is not the case is3: if an OutManager is
reset, then the state of a command or report that was in state PENDING at the time the
OutManager was reset will remain equal to PENDING.

The OutRegistry uses the identi�er attribute (see sections 9.1.1 and 9.2.1) as the key through
which the command or report state is stored.

In order to perform the tasks described above, the OutRegistry o�ers two operations:
StartTracking and Update. These operations run the procedures Registry Start Track-
ing and Registry Update shown in �gure 15.1. Operation StartTracking is performed by
the Load operation of an OutManager to register an OutComponent with the OutRegistry.
Operation Update is performed by the Execution Procedure of an OutManager to ask the
OutRegistry to update its information about an OutComponent's state.

The OutRegistry stores the enable state of out-going commands and reports. The enable
state of out-going command and reports can be controlled at three levels:

(a) At the level of the service type (all commands or reports of a certain type are disabled)

(b) At the level of the service sub-type (all commands or reports matching a certain [type,
sub-type] pair are disabled)

(c) At the level of the discriminant (all commands or reports matching a certain [type,
sub-type, discriminant] triplet are enabled or disabled)

3This exception could be avoided if the OutRegistry were noti�ed of the reset of the OutManager. This
is not done for reasons of simplicity and because it is expected that applications which reset an OutManager
will normally also reset the OutRegistry.

c©2019 P&P Software GmbH. All Rights Reserved. 71

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

Fig. 15.1: The Registry Start Tracking and Registry Update Procedures

The enable state of a particular command or report is derived from these three enable levels
by running the Enable State Determination Procedure of �gure 15.2.

The OutRegistry o�ers an API through which all three levels of enable state can be set and
read. By default, all enable states are set to: �enabled�. The enable states are con�guration
parameters for the OutRegistry which are reset to: �enabled� every time the component is
reset.

As discussed in section 12, by default, the Enable Check of an out-going command or report
determines whether the command or report is enabled or not by reading its enable status
from the OutRegistry.

c©2019 P&P Software GmbH. All Rights Reserved. 72

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

Fig. 15.2: The Enable State Determination Procedure

The C2 Implementation implements the OutRegistry component in module CrFwOutRegistry.
Its adaptation points are de�ned in CrFwOutRegistryUserPar.h and include a list of all
service types and sub-types supported by the application. The information in this header
�le must be consistent with the information in CrFwOutFactoryUserPar.h.

c©2019 P&P Software GmbH. All Rights Reserved. 73

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

16 The InLoader Component

The InLoader is responsible for retrieving incoming packets which become available at an
InStream.

The InLoader component is de�ned as an extension of the Base Component of section 6.
It overrides its Execution Procedure with the procedure shown in �gure 16.1 (the InLoader
Execution Procedure).

The InLoader should be executed when one or more packets have become available at the
InStream. The logic of its execution procedure can be summarized as follows. The procedure
processes incoming packets one by one. A packet is retrieved from the InStream through the
GetPacket operation. If the operation does not return any packet, then the procedure stops
and waits for the next execution. If instead the GetPacket operation returns a fresh packet,
the procedure extracts its destination. This is an adaptation point because it requires
knowledge of the packet's layout. If the packet's destination is invalid (the destination
validity check is another adaptation point), the procedure reports the fact and then attempts
to retrieve the next packet from the InStream (or it holds until the next execution cycle if
no more packets are available in the InStream).

If the packet destination is valid but is not the host application, then the packet is re-
routed. This means that a re-routing destination is determined for the packet and the
packet is forwarded to this re-routing destination. The re-routing destination can be either
the eventual packet destination (if the host application has a direct link to the packet's
destination) or it can be an intermediate destination. The packet is forwarded by directly
loading it into the OutStream associated to the re-routing destination. The OutStream is
retrieved through the OutStreamRegistry component of section 10.3.1.

The determination of the re-routing destination depends on the connection topology of the
system within which the application is embedded and is therefore an adaptation point. The
re-routing information is a con�guration-level information which can only be modi�ed by
resetting the InLoader.

If the packet destination is the host application, then the incoming packet is processed by
the Load Command/Report Procedure. This procedures is shown as activity diagrams in
�gure 16.2. Its logic can be summarized as follows.

The procedures begin by retrieving the command or report type from the packet. The type
is given by the triplet: [service type, service sub-type, discriminant]. This is an adaptation
point because it requires knowledge of the packet layout. If the packet type is not valid (i.e.
if it is not supported by the host application), then the packet is rejected and the incoming
command or report is deemed to have failed its Acceptance Check.

If the packet type is valid, it is used to retrieve an InCommand or InReport instance from
the InFactory (it is recalled that the type determines whether the packet holds a command
or a report). The InCommand or InReport instance is retrieved from the InFactory using
its Make operation. If the creation of the InCommand or InReport instance fails, the packet
is rejected and the incoming command or report is deemed to have failed its Acceptance
Check.

If the creation of the InCommand or InReport instance succeeds, the packet is deserialized
to con�gure the InCommand or InReport instance. After the deserialization has been com-
pleted, the InCommand or InReport is initialized and reset. The reset process is used as

c©2019 P&P Software GmbH. All Rights Reserved. 74

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

Fig. 16.1: The InLoader Execution Procedure

part of the acceptance check for the incoming command or report. If the information in
the packet was syntactically correct and complete and if its CRC attribute is correct, then
the initialization and reset operations succeed and the InCommand or InReport enters state
CONFIGURED.

If the InCommand or InReport fails to enter its state CONFIGURED, it is rejected and the
InCommand or InReport is deemed to have failed its Acceptance Check and is returned to
the InFactory.

If the command or report is successfully con�gured, then it must be loaded into an In-
Manager. For this purpose, the InLoader maintains a list of InManagers (the LIM or List
of InManagers). The size and content of this list are �xed and are de�ned when the In-
Loader is con�gured. The selection algorithm for the InManagers is an adaptation point.
By default, the LIM has two entries and the InLoader selects the �rst item in the LIM for
incoming InCommands and second item for incoming InReports. No facilities are provided
for dynamically changing the set of InManagers. Changes in the set of InManagers can only
be done by recon�guring and then resetting the component.

The Load operation in the InManager may either succeed or fail (see section 19). If it
succeeds, the InCommand or InReport is deemed to have passed its Acceptance Check.

If the Load operation in the InManager fails, the InCommand or InReport is deemed to
have failed its Acceptance Check. This results in the InCommand or InReport component

c©2019 P&P Software GmbH. All Rights Reserved. 75

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

being returned to the InFactory.

Thus, in summary, an InCommand or InReport is deemed to have failed its Acceptance
Check if any of the following conditions is satis�ed:

• The incoming packet holding the InCommand or InReport has an invalid type;

• The InFactory fails to return a component to hold the InCommand or InReport en-
capsulated in the incoming packet;

• The InCommand or InReport fails to enter state CONFIGURED;

• The InCommand or InReport fails to be loaded into the InManager.

In all other cases, the InCommand or InReport is regarded as having passed its Acceptance
Check.

Failure of the Acceptance Check is reported. The reporting of the failure is an adaptation
point. The passing of the Acceptance Check has no consequences for an InReport whereas in
the case of InCommands it may result in an Acceptance Successful Report being generated
to the command's sender if this is required by the setting of the Acknowledge Level attribute
of the InCommand (i.e. each InCommand carries information that determines whether its
passing its Acceptance Check ought to be reported to the command sender, see section
9.1.1).

Fig. 16.2: The InLoader Load Command/Report Procedure

The C2 Implementation implements the InLoader component in module CrFwInLoader. Its
adaptation points are de�ned in CrFwInLoaderUserPar.h but the following should be noted

c©2019 P&P Software GmbH. All Rights Reserved. 76

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

with respect to the implementation of the acceptance check. As discussed above, this check is
split into four sub-checks. Sub-checks 1 and 2 and sub-check 4 are implemented at framework
level. The third sub-check is instead application-speci�c. It is called the Validity Check
(because it veri�es the validity of the parameters of the incoming report or command) and
is implemented by a user-provided function which must conform to the prototype of function
pointers CrFwInRepValidityCheck_t for incoming reports or CrFwInCmdValidityCheck_-
t for incoming commands. The functions implementing the validity checks are de�ned in
CrFwInFactoryUserPar.h.

The implementation of the validity check would typically include the check on the correctness
of the InReport's or InCommand's CRC.

c©2019 P&P Software GmbH. All Rights Reserved. 77

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

17 The InCommand Component

The InCommand component encapsulates an incoming command in a provider application.
This component enforces the generic behaviour that is common to all incoming commands
irrespective of their type and it provides read-only access to a command's attributes. The
InCommand component is an extension of the Base Component of section 6.

Incoming commands must be accepted before they can be executed (see section 9.1.4). The
acceptance check is implemented partly by the InLoader (see section 16) and partly by the
initialization and con�guration checks of the InCommand itself.

The behaviour of a command that has been accepted is modelled by the state machine
shown in �gure 17.1 (the InCommand State Machine). This state machine is embedded
within the CONFIGURED state of the Base State Machine.

Fig. 17.1: The InCommand State Machine

When the state machine is started (i.e. when the command is accepted and the InCommand
enters state CONFIGURED), it enters state ACCEPTED. In this state, the InCommand
component waits for sequences of Execute and Terminate commands. The constraint that
an InCommand component should be sent Execute and Terminate requests in sequence is
enforced by the InManager which is responsible for controlling the execution of InCommands
(see section 19).

Execution of the InCommand state machine in state ACCEPTED causes it to perform the
Ready Check. The Ready Check � like all other command checks and command actions �
is an adaptation point.

If the Ready Check is failed (i.e. if the Ready Check indicates that the command is not yet
ready to start execution), the command remains in state ACCEPTED.

If the Ready Check is passed (i.e. if the Ready Check indicates that the command is ready
to start execution), the command executes the Start Action and, depending on its outcome,
it makes a transition either to state ABORTED or to state PROGRESS.

c©2019 P&P Software GmbH. All Rights Reserved. 78

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

In state PROGRESS, the command executes its Progress Action. If the completion out-
come of the Progress Action is "not completed� (indicating that the command has not yet
completed execution), the InCommand remains in state PROGRESS. If, instead, the com-
pletiong outcome of the Progress Action is �completed� (indicating that all progress steps
have been executed), then the InCommand moves out of the PROGRESS state and executes
its termination action. The outcome of the termination action determines whether the com-
mand enters TERMINATED (to indicate a nominal end of the command) or ABORTED
(to indicate that either one or more of its execution steps have failed or that its termination
action has failed).

The Progress Action is responsible for updating the Progress Step Identi�er. A change in
the value of this identi�er marks the end of a Progress Step. A Progress step is a set logically
related execution steps which are executed in sequence.

If the command is neither terminated nor aborted in the �rst Execute-Terminate cycle, it
will be sent further pairs of Execute-Terminate commands by its InManager and will repeat
the behaviour described in the previous paragraphs.

The InCommand component is responsible for generating acknowledge reports. The ac-
knowledge reports are generated: at the end of the start action; during execution of the
progress action; and at the end of the termination action. At the end of the start and
termination actions, either a success or a failure acknowledge report is generated depending
on the outcome of the action. During the execution of the progress action, failure reports
are generated whenever an execution step fails whereas success reports are generated when-
ever a progress step has terminated successfully. Success reports are only generated if the
corresponding acknowledge �ag is set in the InCommand.

The generation of the acknowledge reports is an adaptation point for the InCommand. Note
that the acknowledge report for the command acceptance is generated by the InLoader
component, see section 16.

The InCommand component provides visibility over all attributes of the command it en-
capsulates but only prede�nes dummy values for them. The set and value of the command
attributes is therefore an adaptation point for the InCommand.

The C2 Implementation implements the InCommand component in module CrFwInCmd.
Applications will normally have to extend this component to create their own InCom-
mand components. Typically, for each application-speci�c command, application devel-
opers should provide one C module which de�nes the functions implementing the actions
and checks for that command. An example of how this can be done is provided in module
CrFwInCmdSample1 which implements a sample command used in the Test Suite.

The adaption points for InCommands are de�ned in CrFwInFactoryUserPar.h. This header
�le in particular de�nes the kinds of InCommands to be supported by an application. Each
kind of supported InCommand is de�ned in terms of its service type, command sub-type
and discriminant value (if applicable). For each supported InCommand kind, the application
developers must specify the pointers to the functions which implement the actions and checks
for that command kind.

c©2019 P&P Software GmbH. All Rights Reserved. 79

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

18 The InReport Component

The InReport component encapsulates an incoming report in a user application. This com-
ponent enforces the generic behaviour that is common to all incoming reports irrespective
of their type and it provides read-only access to a report's attributes.

The InReport component is an extension of the Base Component of section 6. Incoming
reports must be accepted before they can be executed (see section 9.2.4). The acceptance
check is implemented partly by the InLoader (see section 16) and partly by the initialization
and con�guration checks of the InReport itself.

Fig. 18.1: The InReport Execution Procedure

The behaviour of a report that has been accepted is modelled by the procedure shown
in �gure 18.1 (the InReport Execution Procedure). This procedure is used as execution
procedure for the InReport. The procedure simply executes the InReport's Update Action
and then terminates. The Update Action is an adaptation point.

The InReport component provides visibility over all attributes of the reports it encapsulates
but only prede�nes dummy values for them. The set and value of the report attributes is
therefore an adaptation point for the InCommand.

The C2 Implementation implements the InReport component in module CrFwInRep. Ap-
plications will normally have to extend this component to create their own InReport com-
ponents. Typically, for each application-speci�c command, application developers should
provide one C module which de�nes the functions implementing the actions and checks for
that report. An example of how this can be done is provided in module CrFwInRepSample1
which implements a sample report used in the Test Suite.

The adaption points for InReports are de�ned in CrFwInFactoryUserPar.h. This header
�le in particular de�nes the kinds of InReports to be supported by an application. Each
kind of supported InReport is de�ned in terms of its service type, command sub-type and
discriminant value (if applicable). For each supported InReport kind, the application de-
velopers must specify the pointers to the functions which implement the actions and checks
for that report kind.

c©2019 P&P Software GmbH. All Rights Reserved. 80

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

19 The InManager Component

This component is responsible for maintaining a list of pending incoming commands and
reports and for repeatedly executing them until they are either aborted or terminated. The
list of pending commands and reports is called the Pending Command/Report List or PCRL.
The PCRL has a �xed size which is de�ned when the InManager is initialized.

The InManager component o�ers a Load operation through which an InCommand or In-
Report can be added to the PCLR (see activity diagram in �gure 19.1). This operation is
called by the InLoader of section 16. The Load operation may fail if the list is full. The
order in which the items in the PCRL are processed is unspeci�ed.

The Load operation registers the newly loaded InCommand or InReport with the InRegistry
using the latter StartTracking operation (see section 20). Henceforth, and as long as the
InCommand or InReport remains loaded in the InManager, its state is tracked by the
InRegistry.

The InCommand and InReport components loaded into the PCRL must be fully con�gured
(i.e. they must be in state CONFIGURED). Compliance with this constraint is guaranteed
by the logic of the InLoader of section 16.

The InManager maintains a counter of successfully loaded InCommands or InReports. The
counter is initialized to zero when the InManager is reset.

There is no mechanism to �unload� a pending command or report. The InManager au-
tonomously returns a command or report component to the InFactory when the component
has terminated execution. In the case of InCommands, execution can be terminated suc-
cessfully (in which case the InCommand component is in state TERMINATED) or unsuc-
cessfully (in which case the InCommand component is in state ABORTED). In the case of
InReports, execution terminates after they are executed once.

Fig. 19.1: The InManager Load Procedure

The InManager component is de�ned as an extension of the Base Component of section 6.
It uses the Execution Procedure of the Base Component to process the pending commands
and reports. The InManager component processes the pending commands and reports by
sending them an Execute command and a Terminate command (note that the Terminate

c©2019 P&P Software GmbH. All Rights Reserved. 81

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

command has no e�ect on an InReport).

After the Terminate command, the state of the InCommand or InReport is reported to
the InRegistry using the latter Update operation (see section 20). InCommands which
have terminated execution are removed from the PCRL and are returned to the InFactory.
InReports are returned to the InFactory after their �rst execution. The Execution Procedure
of the InManager is shown in �gure 19.2.

Normally, the InManager is embedded within a Real Time Container (see reference [FW-
SP]) which is responsible for executing it. Thus, an application that is required to process
commands and reports at di�erent levels of priority should use several InManagers (one for
each level of priority) and should allocate them to Real Time Containers with a matching
priority.

Fig. 19.2: The InManager Execution Procedure

The C2 Implementation implements the InManager component in module CrFwInManager.
Its adaptation points are de�ned in CrFwInManagerUserPar.h.

As noted above, at CORDET Framework level, there is no requirement covering the order
in which the InReports or InCommands loaded into an InManager are processed when the
InManager is executed. The C2 implementation, however, enforces the following ordering
constraint. If InReports/InCommands C1 to Cn are successfully loaded into an InManager
through successive calls to its Load operation and if this sequence of Load operations is not
interrupted by an execution of the InManager, then, when the InManager is executed next,
the InReports/InCommands C1 to Cn will be processed in the order in which they have
been loaded.

c©2019 P&P Software GmbH. All Rights Reserved. 82

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

20 The InRegistry Component

This component acts as a registry for incoming commands and reports (namely for com-
mands and reports which have been loaded into an InManager).

The function of the InRegistry is to keep track of an incoming command state or of an
incoming report state.

The InRegistry maintains a list of the last N commands or report to have been loaded in
one of the InManagers in an application. For each such command or report, the InRegistry
maintains a record of its state. The command or report state in the InRegistry can have
one of the following values:

• PENDING: the command or report is executing

• ABORTED: the command was aborted during its execution by the InManager

• TERMINATED: the command or report has successfully completed its execution

Note that state ABORTED only applies to incoming commands.

The value of N (the maximum number of commands or reports which are tracked by the
InRegistry) is �xed and is an initialization parameter.

An InCommand or InReport is �rst registered with the InRegistry when it is loaded into the
InManager through the latter Load operation. Subsequently,the information in the InReg-
istry is updated by an InManager every time a command or report is executed. Normally, a
command or report state in the InRegistry eventually becomes either ABORTED or TER-
MINATED. The only situation where this is not the case is when an InManager is reset. In
that case, commands and reports which were pending in the InManager at the time it was
reset may never terminate 4.

The InRegistry uses the command identi�er attribute (see section 9.1.1) as the key through
which the command state is classi�ed.

In order to perform the tasks described above, the InRegistry o�ers two operations: StartTracking
and Update. These operations implement the same behaviour as the operations of the same
name in the OutRegistry, namely they run, respectively, the Registry Start Tracking Pro-
cedure and the Registry Update Procedure (see �gure 15.1). Operation StartTracking is
called by the Load operation of an InManager to register an InCommand or InReport with
the InRegistry. Operation Update is called by the Execution Procedure of an InManager to
ask the InRegistry to update its information about an InCommand or InReport state.

The C2 Implementation implements the InRegistry component in module CrFwInRegistry.
Its adaptation points are de�ned in CrFwInRegistryUserPar.h.

4This is due to the fact that, when the InManager is reset, its list of pending commands and reports is
cleared. It might be argued that the InRegistry should be noti�ed of this fact so as to give it a chance to
update the information it holds about commands which are currently in state PENDING. This is not done
for reasons of simplicity and because it is expected that applications which reset an InManager will also
reset the InRegistry.

c©2019 P&P Software GmbH. All Rights Reserved. 83

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

21 Memory Management

The C2 Implementation uses memory for its data and its code. Memory for data is allocated
either globally, or on the stack, or on the heap.

Globally allocated variables are de�ned in the header �les of the framework modules as
static variables. They are therefore not visible outside the module where they are de�ned
and used.

Local function variables are allocated on the stack. The amount of stack memory used for
this purpose is limited as in most cases only a handful of pointers and variables of primite
type are used.

Allocation on the heap is done through the malloc function and is limited to the following
cases:

• Allocation of memory for components subject to early instantiation (see section 8.1).
This allocation is done in factory functions which are called during the application
start-up phase. The memory thus allocated is never released.

• Allocation of memory for packet queues in module CrFwPcktQueue. This operation is
performed as part of the initialization action of the InStream and OutStream compo-
nents. The memory thus allocated is released when the InStream or OutStream are
shutdown.

• Allocation of memory for the data structure holding the enable status of commands
and reports in the CrFwOutRegistry module. This operation is performed as part of
the initialization action of the OutRegistry component. The memory thus allocated
is released when the OutRegistry is shutdown.

• Allocation of memory for the Pending OutComponent List (POCL) in the CrFwOutManager
module. This operation is performed as part of the initialization action of the Out-
Manager component. The memory thus allocated is released when the OutManager
is shutdown.

• Allocation of memory for the Pending Command/Report List (PCRL) in the CrFwInManager
module. This operation is performed as part of the initialization action of the In-
Manager component. The memory thus allocated is released when the InManager is
shutdown.

• Allocation of memory for the arrays holding the sequence counters for the destina-
tion/source groups associated to an InStream in the CrFwInStream module. This
operation is performed as part of the initialization action of the InStream component.
The memory thus allocated is released when the InStream is shutdown.

• Allocation of memory for the arrays holding the sequence counters for the destina-
tion/source groups associated to an OutStream in the CrFwOutStream module. This
operation is performed as part of the initialization action of the OutStream component.
The memory thus allocated is released when the OutStream is shutdown.

Thus, in all cases, memory allocation is done as part of the initialization of the application
of a component. During normal operation (i.e. when the application is in state NORMAL,
see section 8.2), no allocation of memory on the heap is ever performed.

The C2 Implementation does not handle the case where the call to malloc fails. This is
acceptable because the malloc calls are only performed during application or component
initialization and hence the number of calls and the amount of memory they claim can be

c©2019 P&P Software GmbH. All Rights Reserved. 84

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

determined statically. It is therefore possible for the application developer to ensure that
su�cient memory is available and to guarantee by design that no malloc failures can occur.

Release of heap memory is done through calls to the free function. This is exclusively done
in the shutdown operations of the components which had allocated memory as part of their
initialization.

Thus, in summary, dynamic memory allocation on the heap is only done as part of the
instantiation of the framework component and, in some cases, of their initialization. The
memory which is allocated on the heap during early instantiation of components is never
released (because components instantiated early are not intended to be ever destroyed).
The memory which is allocated as part of component initialization is released when the
components are shutdown.

For components which allocate memory from the heap as part of their initialization (Out-
Registry, InManager, OutManager, InStream and OutStream) two paths to a memory leak
are possible:

• A component is stopped after it has been initialized and then it is initialized again

• A component is initialized more than once without being shut down

Responsibility for avoiding the �rst kind of memory leak rests with the user who should
avoid stopping a component (a shutdown should be performed instead). The second kind
of memory leak is not possible in the case of the OutRegistry, InManager and OutManager
components because their initialization action always returns an outcome of "success". This
implies that the initialization action can only be executed once before the component is shut
down (see �gure 6.1). The InStream and OutStream, too, have default initialization action
which always returns an outcome of "success" (see functions CrFwInStreamDefInitAction
and CrFwOutStreamDefInitAction) but these functions can be extended or overridden by
a user. In this case, it is up to the user to ensure the proper management of memory
allocation.

Late instantiation of components does not require any allocation of memory from the heap
because the factory components which are responsible for the instantiation manage pools of
pre-allocated memory which is allocated globally during application initialization. This is
discussed at greater length in the next section.

Applications which do not wish to link to the standard malloc and free functions can: (a)
de�ne their own malloc function to, for instance, allocate memory sequentially from a pre-
allocated array of �xed size, and (b) avoid ever shutting down a component thus avoiding
calls to free.

The C2 Implementation is designed to minimize code memory footprint. The exact memory
requirements for its code depend on the choice of compiler and linker but will typically be
of the order of several kBytes. As an example, table 21.1 reports the memory requirements
for the �les which implement the framework components.

The �gures in the table have been obtained with the gcc compiler con�gured to minimize
memory occupation. The data in the table were derived from the linker map. They corre-
spond to the memory of type .text (i.e. the code segment containing executable instruc-
tions) allocated to each module. The measurements were made on the beta release 0.1.0 of
the C2 Implementation in the following environment:

• compiler: gcc version 4.6.3 (Ubuntu/Linaro 4.6.3-1ubuntu5)

c©2019 P&P Software GmbH. All Rights Reserved. 85

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

• target: i686-linux-gnu

• OS: Linux ubuntu 12.04 (32 bits)

• compiler options: -Os -Wall -c -fmessage-length=0

• linker options: -Wl,-Map=memory.map

Table 21.1: Code Memory Footprint for C2 Implementation Modules

Module Memory Size Header File

Base Component 1411 bytes CrFwBaseCmp.h,
CrFwDummyExecProc,
CrFwInitProc,
CrFwResetProc

InCommand 1680 bytes CrFwInCmd.h

InRegistry 545 bytes CrFwInRegistry.h

InManager 1208 bytes CrFwInManager.h

InReport 292 bytes CrFwInRep.h,
CrFwInRepExecProc.h

InLoader 919 bytes CrFwInLoader.h

InFactory 2188 bytes CrFwInFactory.h

InStream 1416 bytes CrFwInStream.h

OutComponent 1089 bytes CrFwOutCmp.h

OutFactory 1397 bytes CrFwOutFactory.h

OutLoader 357 bytes CrFwOutLoader.h

OutManager 1066 bytes CrFwOutManager.h

OutRegistry 1415 bytes CrFwOutRegistry.h

OutStream 1373 bytes CrFwOutStream.h

Packet Queue 499 bytes CrFwPcktQueue.h

Total 16855 bytes

21.1 Components with Late Instantiation

The late instantiation mechanism (see section 8.1) is used for the components which en-
capsulate commands and reports (namely the InReport, InCommand and OutComponent
components). As commands and reports are sent and received by an application during
its normal operation, the components which encapsulate them must also be created and
destroyed during normal operation ("late component instantiation"). The creation and de-
struction of these components is done through the Make and Release functions provided by
the InFactory and OutFactory components.

Each command or report component encapsulates a packet which holds the sequence of bytes
which represents the packet at middleware level (see 4.6). Packets, too, must be created
and destroyed during normal operation through calls to the Make and Release functions of
CrFwPckt.h.

There are two functional chains through which a command or report component is created,
used and then destroyed. The �rst chain arises when a command or report is received by
an application. Figure 21.1 shows this chain as an activity diagram. Note that all activities
in the diagrams are performed by framework components. Application components are

c©2019 P&P Software GmbH. All Rights Reserved. 86

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

therefore not involved in the processing of incoming commands and reports.

Similarly, �gure 21.2 shows the functional chain through which an out-going command or
report is processed. Activities in the yellow bubbles are executed by the application; the
other activities are instead executed by the framework components.

The point of �gures 21.1 and 21.2 is to show that, under nominal conditions, command
and report components which are created during normal operation through a call to a Make

function are always eventually released through a call to a Release function. The only
situations where this is not the case are:

• The processing of an out-going command or report component by the OutManager
never completes (i.e. the out-going command or report neither terminates nor is
aborted). The out-going command or report remains permanently loaded in the Out-
Manager and its memory is consequently never released.

• The processing of an incoming command or report component by the InManager never
completes (i.e. the incoming command or report neither terminates nor is aborted).
The incoming command or report remains permanently loaded in the InManager and
its memory is consequently nver released.

• The application requests and obtains an OutComponent from the OutFactory but
never completes its con�guration and therefore never loads the OutComponent in the
OutLoader. The OutComponent remains permanently with the application and is
therefore never released.

• A component involved in the processing of commands or reports is reset or shutdown
at a time when command or report components are pending.

The �rst two cases arise as a result of erroneous de�nitions of a command or report (for
instance, by having a command whose Start Check never allows command execution to be
started). The last two cases arise because of an error in the application. In all other cases,
absence of memory leaks is guaranteed by the framework design.

Fig. 21.1: Processing Chain for an Incoming Command or Report

c©2019 P&P Software GmbH. All Rights Reserved. 87

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

Fig. 21.2: Processing Chain for an Out-Going Command or Report

c©2019 P&P Software GmbH. All Rights Reserved. 88

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

22 Real Time Issues

The domain of the CORDET Framework are embedded control applications. These appli-
cations are often subject to real-time constraints. This section considers some issues which
related to the usage of the C2 Implementation in a real-time environment.

22.1 Scheduling of Framework Components

The C2 Implementation does not de�ne any "active components": none of its components
create or manage threads of execution. All of its components expect to be called from
outside. The entry points for an external scheduler are listed in table 22.1. The order in
which they are listed is approximately the order in which they will typically be called but
no speci�c ordering sequence is mandated by the C2 Implementation.

Often a cyclical scheduling approach will be used for the entry points listed in the table
(with the possible exceptions of the �rst and the last entries which might be attached to
signals or interrupts from the middleware). Multiple cycles with di�erent periods might also
be used where the high frequency cycles are used to process high-priority commands/reports
and the low frequency cycles are used to process low-priority commands/reports.

One option for implementing the link between the components listed in the table and a
scheduler is to use the "Real-Time Containers" of reference [FW-SP] (a C-language imple-
mentation is available from reference [FW-SP]).

Table 22.1: Entry Points for Scheduler

N Entry Point Description

1 Send Command
CrFwInStreamPcktAvail

to the InStreams

Command must be sent when a packet becomes avail-
able at the Middleware Interface or else it can be sent
periodically (polling).

2 Execute InLoader Causes incoming packets collected by the InStreams to
be de-serialized and transformed into components which
are then loaded into the InManagers.

3 Execute InManagers Causes incoming reports and commands which are pend-
ing in the InManagers to be processed.

4 Deleted Deleted.

5 Execute OutManagers Causes out-going reports and commands which are
pending in the OutManagers to be processed.

6 Send Command
CrFwOutStream-

ConnectionAvail to the
OutStreams

Command must be sent when the out-going Middleware
connection for an OutStream has become available or
else it can be sent periodically (polling).

22.1.1 Concurrency

The C2 Implementation uses global variables (see section 21) but does not implement any
mechanisms to ensure access in mutual exclusion to these variables. It is therefore not suited
for use in a concurrent environment. It is the responsibility of the user to ensure that its
components are accessed mutual exclusion.

c©2019 P&P Software GmbH. All Rights Reserved. 89

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

22.1.2 Recursion

None of the functions de�ned by the C2 Implementation are recursive. Recursion is used to
a limited extent in the libraries which implement the state machine and procedure model
used by the C2 Implementation (see section 5). However, the depth of recursion is limited
to 2 (because the depth of recursion is equal to the number of levels of embedding of state
machines and, in the C2 Implementation, only one level of state machine embedding is
used).

c©2019 P&P Software GmbH. All Rights Reserved. 90

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

23 Error Handling

In general, the C2 Implementation is intended for applications whose design is validated and
whose implementation is veri�ed. They therefore only handle errors which arise as a result
of the application receiving at run-time inputs from outside which are illegal (i.e. inputs
which are outside the boundaries speci�ed for the application).

The inputs for the C2 Implementation are the incoming commands and reports. These may
be "illegal" either because their content is illegal or because the time pattern with which they
are sent is illegal. The resulting error situations are speci�ed by the CORDET Framework
in reference [CR-SP]. The CORDET Components handle these errors by reporting them
through the CrFwRepErr.h interface. This interface is one of the adaptation points of the
framework and must be implemented by applications according to their needs.

A typical implementation of the error reporting interface could be as follows. The user
de�nes a service to report errors and implements the CrFwRepErr.h interface to generate
reports belonging to that service and carrying a description of the error. Di�erent re-
port sub-types can be de�ned to represent di�erent levels of severity. An example of this
approach is the so-called "Event Reporting Service" of the PUS (see reference [PS-SP]).
The range of errors handled through this mechanism is de�ned by the enumerated type
CrFwRepErrCode_t.

In addition to handling these exogenous error situations, the C2 Implementation also handles
a limited number of "Applicaton Errors". Application errors arise as a result of a design or
implementation error in the application itself. The situations which are handled by the C2
Implementation are those which satisfy the following constraints:

• The error situation arises when a framework function has been called by the application
code with an illegal parameter value or in an illegal context and execution of the
function with that value or in that context would cause an internal framework data
structure to be corrupted.

• The check for the error can be implemented with a minimal impact on memory and
CPU consumption.

Thus, the objective of the handling of application errors is to shield a component's internal
data structures. Note that no handling of errors is implemented when the incorrect calling
parameters or calling context of a function would be harmful for the caller.

Application errors are handled as follows. The function where the error is detected sets an
application error code and then returns. Nominally, the application error code should be
equal to: crNoAppErr. If the application error code has a di�erent value, then an application
error has been encountered. If multiple errors have been encountered, the application error
code re�ects the most recent error.

If the application error code has a non-nominal value, the behaviour of the framework
component is unde�ned and will normally be erroneous. The application error code can be
accessed through function CrFwGetAppErrCode.

The range of application error codes is de�ned by the enumerated type CrFwAppErrCode_t.

c©2019 P&P Software GmbH. All Rights Reserved. 91

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

24 Framework Instantiation Process

The Framework Instantiation Process is the process through which the components provided
by the framework are used to build an application within the framework domain. This
section describes the steps required to instantiate the C2 Implementation of the CORDET
Framework.

Two major steps are recognized in the instantiation process:

S1 Application Speci�cation

S2 Application Implementation

Step S1 consists in casting (part of) the requirements of the target applications in terms
of the services it provides to and requires from other entities in the system wihin which it
is embedded. Step S2 consists in customizing the framework components to support the
services de�ned in step S1.

The table in the next page breaks up steps S1 and S2 into sub-steps. To each S1 sub-step,
an S2 sub-step is associated (because each speci�cation activity has an implementation-level
counterpart).

After all activities listed in the table have been performed, the application developer should
have: (a) a complete speci�cation of the framework-dependent part of his application and
(b) a close-out for all adaptation points o�ered by the framework. The latter means that
the framework components are ready for deployment in the target application.

If the guidelines of section 3.3 are followed, the software of the instantiated framework will
be organized as follows:

1. One directory (normally called CrFramework) holding the invariant part of the frame-
work software. This directory can be a copy of the CrFramework in the Delivery File
(see section 3.3).

2. One directory (normally called FwProfile) holding the code implementing the state
machine and procedure behaviour. This directory can be a copy of the FwProfile in
the Delivery File (see section 3.3).

3. One directory (normally called CrConfig〈Name〉 where "Name" is the name of the
target application) holding the adaptable part of the framework software customized
for the target application. This directory may be obtained by taking the Config

directory in the Delivery File (CrConfigTestSuite) and then modifying its content
as speci�ed in the implementation steps.

4. One directory holding the application-speci�c software.

In general, it is the responsibility of the user to ensure that the con�guration information
provided during the instantiation process is complete and consistent. A full check of com-
pleteness and consistency is not possible. However, the C2 Implementation o�ers module
CrFwAux which implements a partial consistency check for the information in the *UserPar
header �les. Application developers should use this con�guration check in the initial phase
and can then remove it from their executable once con�dence has been achieved that the
con�guration data are correct and complete.

c©2019 P&P Software GmbH. All Rights Reserved. 92

www.pnp-software.com

w
w
w
.
p
n
p
-
s
o
f
t
w
a
r
e
.
c
o
m

P
P
-U
M
-C
O
R
-0
0
0
2

R
ev
isio

n
1
.0

D
a
te

0
5
/
0
5
/
2
0
1
9

Table 24.1: Framework Instantiation Speci�cation and Implementation Steps

N Step Name Speci�cation Sub-Step Implementation Sub-Step

1 Identify
Target
Application

Identify the application for which the framework is
being instantiated.

The Application Identi�er is speci�ed in
CrFwUserConstants.h.

2 Identify
Service
Users

Identify the users of the services provided by the
target application. Each service user is identi�ed
through its Application Identi�er.

The service user identi�ers are used to de�ne the sources of
incoming commands (InCommands) for the application in
CrFwInStreamUserPar.h and the destination of out-going
reports (OutCompnents) in CrFwOutStreamUserPar.h.

3 Identify
Service
Providers

Identify the providers of the services used by the tar-
get application. Each service provider is identi�ed
through its Application Identi�er.

The service provider identi�ers are used to de�ne
the sources of incoming reports (InReports) for the
application in CrFwInStreamUserPar.h and the des-
tination of out-going commands (OutCompnents) in
CrFwOutStreamUserPar.h.

4 De�ne Used
Services

De�ne the services which are used by the target ap-
plication. Each service is de�ned through: its identi-
�er (the "service type"); a description of the purpose
of the service; the external entity which provides the
service; the commands and reports which implement
the service.

The range of services used by the applica-
tion is de�ned in CrFwInFactoryUserPar.h and
CrFwOutFactoryUserPar.h. Also, a list of ser-
vices supported by the application is de�ned in
CrFwOutRegistryUserPar.h.

5 De�ne
Provided
Services

De�ne the services which are provided by the tar-
get application. Each service is de�ned through: its
identi�er (the "service type"); a description of the
purpose of the service; the external entity which uses
the service; the commands and reports which imple-
ment the service.

The range of services provided by the applica-
tion is de�ned in CrFwInFactoryUserPar.h and
CrFwOutFactoryUserPar.h. Also, a list of ser-
vices supported by the application is de�ned in
CrFwOutRegistryUserPar.h.

c©
2
0
1
9
P
&
P
S
o
ftw

a
re

G
m
b
H
.
A
ll
R
ig
h
ts
R
eserv

ed
.

9
3

www.pnp-software.com

w
w
w
.
p
n
p
-
s
o
f
t
w
a
r
e
.
c
o
m

P
P
-U
M
-C
O
R
-0
0
0
2

R
ev
isio

n
1
.0

D
a
te

0
5
/
0
5
/
2
0
1
9

N Step Name Speci�cation Sub-Step Implementation Sub-Step

6 Identify
Re-Routing
Capabilities

De�ne the applications to which incoming packets
received must be re-routed.

The re-routing information is de�ned in the re-routing func-
tion which is provided to the framework as a function
pointer in CrFwInLoaderUserPar.h and for which two de-
faults are provided by the InLoader component. Also, re-
routing contributes to the de�nition of InStreams and Out-
Streams (InStreams are required to receive re-routed pack-
ets and OutStreams are required to forward them).

7 De�ne
Incoming
Commands

For each provided service, de�ne the commands
which implement it (i.e the commands which the
application must be able to receive and process) in
terms of: their attributes, their acceptance and ready
checks, their start action, progress action, termina-
tion action, and abort action.

The detailed de�nition of the incoming commands is done
in CrFwInFactoryUserPar.h. Also, for each command, a
C-module must be provided which implements the func-
tions encapsulating the command actions and checks. See
module CrFwInCmdSample1 for an example.

8 De�ne
Incoming
Reports

For each used service, de�ne the reports which imple-
ment it (i.e. the reports which the application must
be able to receive and process) in terms of: their
attributes, their acceptance check, and their update
action.

The detailed de�nition of the incoming reports is done
in CrFwInFactoryUserPar.h. Also, for each report, a C-
module must be provided which implements the functions
encapsulating the report actions and checks. See module
CrFwInRepSample1 for an example.

9 De�ne
Outgoing
Commands
and Reports

For each provided service, de�ne the reports which
implement it and for each used service, de�ne the
commands which implement it in terms of: their at-
tributes, their enable check, and their ready, and re-
peat check and their update action.

The detailed de�nition of the out-going commands and re-
ports is done in CrFwOutFactoryUserPar.h. Also, for out-
going reports or commands which do not use the default
implementations of the OutComponent adaptation points,
a C-module must be provided which implements the func-
tions encapsulating the report or command actions and
checks. See module CrFwOutCmpSample1 for an example.

10 Assign
Commands
and Reports
to Groups

De�ne command and report groups and de�ne rules
for assigning commands and reports to groups.

The de�nition of the assignment rules is done in the imple-
mentation of the getter and setter functions for the group
attribute in module CrFwPckt.

c©
2
0
1
9
P
&
P
S
o
ftw

a
re

G
m
b
H
.
A
ll
R
ig
h
ts
R
eserv

ed
.

9
4

www.pnp-software.com

w
w
w
.
p
n
p
-
s
o
f
t
w
a
r
e
.
c
o
m

P
P
-U
M
-C
O
R
-0
0
0
2

R
ev
isio

n
1
.0

D
a
te

0
5
/
0
5
/
2
0
1
9

N Step Name Speci�cation Sub-Step Implementation Sub-Step

11 De�ne
Command
and Report
Layout

For each command and report which can be either
generated or received by the target application, de-
�ne the layout of the packet which carries it.

The packet layout is implicitly implemented in the setter
and getter functions of the CrFwPckt.h interface. The ap-
plication developer must provide a complete implementa-
tion for this interface. A stub implementation is provided in
the con�guration directory /cr/src/crConfigTestSuite.

12 De�ne
Packet
Allocation
Policy

De�ne the allocation policy for the packets which
the application creates when it receives a command
or report.

The packet allocation policy is implemented in the make

function of the CrFwPckt.h interface. The application de-
veloper must provide a complete implementation for this
interface. A stub implementation is provided in the con�g-
uration directory /cr/src/crConfigTestSuite.

13 De�ne
Command
and Report
Capacity

De�ne: the maximum number of incoming com-
mands which the target application can hold at any
given time; the maximum number of incoming re-
ports which the target application can hold at any
given time; and the maximum number of outgoing
commands or reports which the application can hold
at any given time.

The capacities for incoming commands and reports are de-
�ned as #DEFINE constants in CrFwInFactoryUserPar.h.
The capacity for out-going commands and reports is de�ned
as a #DEFINE constant in CrFwOutFactoryUserPar.h.

14 De�ne
Application
Modes

De�ne the sub-states in the states of the Application
State Machine.

For each set of sub-states, a state machine implementing
them is de�ned which is then embedded in one of the states
of the Application State Machine. The embedded state
machines are de�ned in CrFwAppSmUserApp.h.

15 De�ne
Incoming
Middleware
Interface

De�ne the interface to the middleware which is re-
sponsible for receiving the commands and reports for
the target application.

For each source of commands or reports, one InStream is
de�ned. The size of the InStream packet queues and the
pointers to the functions which implement the InStream
operations are de�ned in CrFwInStreamUserPar.h. Also,
for each InStream a C module must be de�ned which im-
plements the InStream functions. A test stub is provided
in CrFwInStreamStub.

c©
2
0
1
9
P
&
P
S
o
ftw

a
re

G
m
b
H
.
A
ll
R
ig
h
ts
R
eserv

ed
.

9
5

www.pnp-software.com

w
w
w
.
p
n
p
-
s
o
f
t
w
a
r
e
.
c
o
m

P
P
-U
M
-C
O
R
-0
0
0
2

R
ev
isio

n
1
.0

D
a
te

0
5
/
0
5
/
2
0
1
9

N Step Name Speci�cation Sub-Step Implementation Sub-Step

16 De�ne
Out-Going
Middleware
Interface

De�ne the interface to the middleware which is re-
sponsible for sending the commands and reports orig-
inating in the target application.

For each command or report destination, one OutStream is
de�ned. The size of the OutStream packet queues and the
pointers to the functions which implement the OutStream
operations are de�ned in CrFwOutStreamUserPar.h. Also,
for each OutStream a C module must be de�ned which im-
plements the OutStream functions. A test stub is provided
in CrFwOutStreamStub.

17 De�ne
InManagers

De�ne the number of InManagers and the size of
their Pending Command/Report Lists (PCRLs).

These items are de�ned as #DEFINE constants in
CrFwInManagerUserPar.h

18 De�ne
InManager
Selection
Function

De�ne the logic to select the InManager where an
incoming command or report is loaded.

A pointer to this function is de�ned in
CrFwInLoaderUserPar.h. A default implementation
is provided by the InLoader (see CrFwInLoader.h).

19 De�ne
InRegistry

De�ne the maximum number of commands and re-
ports which can be tracked by the InRegistry.

This item is de�ned as a #DEFINE constant in
CrFwInRegsitryUserPar.h.

20 De�ne Out-
Managers

De�ne the number of OutManagers and the size of
their Pending OutComponent Lists (POCLs).

These items are de�ned as #DEFINE constants in
CrFwOutManagerUserPar.h.

21 De�ne
OutManager
Selection
Function

De�ne the logic to select the OutManager where an
out-going command or report is loaded.

A pointer to this function is de�ned in
CrFwOutLoaderUserPar.h. A default implementation
is provided by the OutLoader (see CrFwOutLoader.h).

22 De�ne
OutRegistry

De�ne the maximum number of commands and re-
ports which can be tracked by the OutRegistry.

This item is de�ned as a #DEFINE constant in
CrFwOutRegistryUserPar.h.

23 De�ne
Start-Up
Procedure

De�ne the start-up procedure for the application.
This in particular includes the sequence in which
framework components are instantiated, initialized
and con�gured.

Implement the Application Start-Up Procedure by provid-
ing an implementation for CrFwAppStartUpProc.h. A test
stub is provided in CrFwAppStartUpProc.c.

24 De�ne Reset
Procedure

De�ne the reset procedure for the application. This
in particular includes the sequence in which frame-
work components are reset.

Implement the Application Reset Procedure by providing
an implementation for CrFwAppResetProc.h. A test stub
is provided in CrFwAppResetProc.c.

c©
2
0
1
9
P
&
P
S
o
ftw

a
re

G
m
b
H
.
A
ll
R
ig
h
ts
R
eserv

ed
.

9
6

www.pnp-software.com

w
w
w
.
p
n
p
-
s
o
f
t
w
a
r
e
.
c
o
m

P
P
-U
M
-C
O
R
-0
0
0
2

R
ev
isio

n
1
.0

D
a
te

0
5
/
0
5
/
2
0
1
9

N Step Name Speci�cation Sub-Step Implementation Sub-Step

25 De�ne
Shutdown
Procedure

De�ne the shutdown procedure for the application.
This in particular includes the sequence in which
framework components are shutdown.

Implement the Application Shutdown Procedure by pro-
viding an implementation for CrFwAppShutdownProc.h. A
test stub is provided in CrFwAppShutdownProc.c.

26 De�ne Time
Interface

De�ne the means through which the current time is
acquired. This is needed for time-stamping out-going
commands and reports in the OutStream.

The time acquisition interface is de�ned in CrFwTime.h.
The application developer must provide a complete
implementation for this interface. A stub imple-
mentation is provided in the con�guration directory
/cr/src/crConfigTestSuite.

27 De�ne Error
Reporting
Interface

De�ne the response to the generation of error re-
ports.

The respone to error reports is de�ned in CrFwRepErr.h.
The application developer must provide a complete
implementation for this interface. A test imple-
mentation is provided in the con�guration directory
/cr/src/crConfigTestSuite.

28 De�ne
InCommand
Outcome
Reporting

De�ne the means through which the outcome of the
processing of incoming commands is reported.

The respone to the reports of InCommand outcomes is de-
�ned in CrFwRepInCmdOutcome.h. The application devel-
oper must provide a complete implementation for this inter-
face. A test implementation is provided in the con�guration
directory /cr/src/crConfigTestSuite.

29 De�ne
Primitive
Types

De�ne the range of the primitive types used by the
framework components. The driver for this de�nition
is the need to optimize the memory footprint of the
application.

The primitive types are de�ned through typedef's in
CrFwUserConstants.h. Application developers can over-
ride the default de�nitions in this �le (but note that, in
most cases, the default de�nitions should be adequate).

c©
2
0
1
9
P
&
P
S
o
ftw

a
re

G
m
b
H
.
A
ll
R
ig
h
ts
R
eserv

ed
.

9
7

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

25 Demo Application

This section has been deleted.

c©2019 P&P Software GmbH. All Rights Reserved. 98

www.pnp-software.com

www.pnp-software.com

PP-UM-COR-0002
Revision 1.0

Date 05/05/2019

A Adaptation Points

The adaptation model of the C2 Implementation is described in section 7. This appendix
lists the adaptation points o�ered by the framework in table A.1. The table is organized as
follows:

• The left-most column in the table gives the identi�er of the adaptation point.

• The middle column brie�y describes the adaptation point.

• The right-most column describes the location in the delivery �le directory /cr/src/CrConfigTestSuite
where the adaptation point is implemented.

With reference to the last point, it is recalled that all adaptation points are implemented as
either #define constants or typedef de�nitions in C header �les in directory /cr/src/CrConfigTestSuite
or as C body �les in this same directory implementing framework interfaces.

Table A.1 only provides a summary view of the adaptation points. Their detailed de�ni-
tion is contained in the doxygen documentation of the �les in the con�guration directory
/cr/src/CrConfigTestSuite.

c©2019 P&P Software GmbH. All Rights Reserved. 99

www.pnp-software.com

w
w
w
.
p
n
p
-
s
o
f
t
w
a
r
e
.
c
o
m

P
P
-U
M
-C
O
R
-0
0
0
2

R
ev
isio

n
1
.0

D
a
te

0
5
/
0
5
/
2
0
1
9

Table A.1: C2 Implementation Adaptation Points

AP ID Adaptation Point Implementation

C2-CST-1 Identi�er of Host Application #DEFINE constant in CrFwUserConstants.h

C2-CST-2 Range of Service Type, Sub-Type and Discrim-
inants for InCommands and InReports

#DEFINE constants in CrFwUserConstants.h

C2-AST-1 Application Start-Up Procedure Implementation of CrFwAppStartUpProc.h. Only a test stub is pro-
vided as default at framework level.

C2-AST-2 Application Reset Procedure Implementation of CrFwAppResetProc.h. Only a test stub is pro-
vided as default at framework level.

C2-AST-3 Application Shutdown Procedure Implementation of CrFwAppShutdownProc.h. Only a test stub is
provided as default at framework level.

C2-AST-4 State Machine Embedded in state START_UP
of Application State Machine

#DEFINE constant in CrFwAppSmUserPar.h

C2-AST-5 State Machine Embedded in state NORMAL of
Application State Machine

#DEFINE constant in CrFwAppSmUserPar.h

C2-AST-6 State Machine Embedded in state RESET of
Application State Machine

#DEFINE constant in CrFwAppSmUserPar.h

C2-AST-7 State Machine Embedded in state SHUT-
DOWN of Application State Machine

#DEFINE constant in CrFwAppSmUserPar.h

C2-PCK-1 Operations to Set and Get the Values of Com-
mand and Report Attributes in a Packet

Implementation of CrFwPckt.h. Only a test stub is provided as
default at framework level.

C2-ERR-1 Operations to Report Errors Values of Com-
mand and Report Attributes in a Packet

Implementation of CrFwRepErr.h. Only a test stub is provided as
default at framework level.

C2-OFA-1 OutFactory Capacity #DEFINE constant in CrFwOutFactoryUserPar.h de�nes maximum
number of OutComponents which can be allocated by the factory.

c©
2
0
1
9
P
&
P
S
o
ftw

a
re

G
m
b
H
.
A
ll
R
ig
h
ts
R
eserv

ed
.

1
0
0

www.pnp-software.com

w
w
w
.
p
n
p
-
s
o
f
t
w
a
r
e
.
c
o
m

P
P
-U
M
-C
O
R
-0
0
0
2

R
ev
isio

n
1
.0

D
a
te

0
5
/
0
5
/
2
0
1
9

AP ID Adaptation Point Implementation

C2-OFA-2 OutComponent Kinds #DEFINE constants in CrFwOutFactoryUserPar.h de�ne the kinds of
OutComponents supported by the application. An OutComponent
kind is de�ned through its service type, command or report sub-
type, and discriminant value. For each supported OutComponent
kind, function pointers are de�ned implementing the OutComponent
checks and actions.

C2-IFA-1 InFactory Capacity for InReports #DEFINE constant in CrFwInFactoryUserPar.h de�nes maximum
number of InReports which can be allocated by the factory.

C2-IFA-2 InFactory Capacity for InCommands #DEFINE constant in CrFwInFactoryUserPar.h de�nes maximum
number of InCommands which can be allocated by the factory.

C2-IFA-3 InReport Kinds #DEFINE constants in CrFwInFactoryUserPar.h de�ne the kinds of
InReports supported by the application. An InReport kind is de�ned
through its service type, command or report sub-type, and discrimi-
nant value. For each supported InReport kind, function pointers are
de�ned implementing the InReport checks and actions.

C2-IFA-4 InCommand Kinds #DEFINE constants in CrFwInFactoryUserPar.h de�ne the kinds of
InCommands supported by the application. An InCommand kind is
de�ned through its service type, command or report sub-type, and
discriminant value. For each supported InCommand kind, function
pointers are de�ned implementing the InCommand checks and ac-
tions.

C2-OST-1 Number of OutStreams in the Application #DEFINE constant in CrFwOutStreamUserPar.h

C2-OST-2 Packet Queue Size for OutStream #DEFINE constant (one for each OutStream in the application) in
CrFwOutStreamUserPar.h

C2-OST-3 Destination associated to OutStream #DEFINE constant (one for each OutStream in the application) in
CrFwOutStreamUserPar.h

C2-OST-4 Initialization Check in Initialization Procedure
of OutStream

Function pointers (one for each OutStream in the application) in
CrFwOutStreamUserPar.h. Default implementation is provided in
CrFwOutStream.h..

c©
2
0
1
9
P
&
P
S
o
ftw

a
re

G
m
b
H
.
A
ll
R
ig
h
ts
R
eserv

ed
.

1
0
1

www.pnp-software.com

w
w
w
.
p
n
p
-
s
o
f
t
w
a
r
e
.
c
o
m

P
P
-U
M
-C
O
R
-0
0
0
2

R
ev
isio

n
1
.0

D
a
te

0
5
/
0
5
/
2
0
1
9

AP ID Adaptation Point Implementation

C2-OST-5 Initialization Action in Initialization Procedure
of OutStream

Function pointers (one for each OutStream in the application) in
CrFwOutStreamUserPar.h. Default implementation is provided in
CrFwOutStream.h..

C2-OST-4 Con�guration Check in Initialization Procedure
of OutStream

Function pointers (one for each OutStream in the application) in
CrFwOutStreamUserPar.h. Default implementation is provided in
CrFwOutStream.h..

C2-OST-6 Con�guration Action in Reset Procedure of
OutStream

Function pointers (one for each OutStream in the application) in
CrFwOutStreamUserPar.h. Default implementation is provided in
CrFwOutStream.h..

C2-OST-7 Shutdown Action of OutStream Function pointers (one for each OutStream in the application) in
CrFwOutStreamUserPar.h. Default implementation is provided in
CrFwOutStream.h..

C2-OST-8 Packet Hand-Over Operation of OutStream Function pointers (one for each OutStream in the application) in
CrFwOutStreamUserPar.h. Only a test stub is provided as default
at framework level.

C2-OST-9 Operation to Compute and Set a Packet's CRC Implementation of function CrFwComputeAndSetCrc in interface
CrFwPckt.h. Only a test stub is provided by default at framework
level.

C2-IST-1 Number of InStreams in the Application #DEFINE constant in CrFwInStreamUserPar.h

C2-IST-2 Size of the Packet Queue in InStream #DEFINE constant (one for each InStream in the application) in
CrFwInStreamUserPar.h

C2-IST-3 Source associated to InStream #DEFINE constant (one for each InStream in the application) in
CrFwInStreamUserPar.h

C2-IST-4 Initialization Check in Initialization Procedure
of InStream

Function pointers (one for each InStream in the application) in
CrFwInStreamUserPar.h. Default implementation is provided in
CrFwInStream.h.

C2-IST-5 Initialization Action in Initialization Procedure
of InStream

Function pointers (one for each InStream in the application) in
CrFwInStreamUserPar.h. Default implementation is provided in
CrFwInStream.h.

c©
2
0
1
9
P
&
P
S
o
ftw

a
re

G
m
b
H
.
A
ll
R
ig
h
ts
R
eserv

ed
.

1
0
2

www.pnp-software.com

w
w
w
.
p
n
p
-
s
o
f
t
w
a
r
e
.
c
o
m

P
P
-U
M
-C
O
R
-0
0
0
2

R
ev
isio

n
1
.0

D
a
te

0
5
/
0
5
/
2
0
1
9

AP ID Adaptation Point Implementation

C2-IST-6 Con�guration Action in Reset Procedure of In-
Stream

Function pointers (one for each InStream in the application) in
CrFwInStreamUserPar.h. Default implementation is provided in
CrFwInStream.h.

C2-IST-7 Shutdown Action of InStream Function pointers (one for each InStream in the application) in
CrFwInStreamUserPar.h. Default implementation is provided in
CrFwInStream.h.

C2-IST-8 Packet Collect Operation for InStream Function pointers (one for each InStream in the application) in
CrFwInStreamUserPar.h. Only a test stub is provided as default
at framework level.

C2-IST-9 Packet Available Check Operation for InStream Function pointers (one for each InStream in the application) in
CrFwInStreamUserPar.h. Only a test stub is provided as default
at framework level.

C2-OST-10 Get OutStream Operation of OutStreamReg-
istry

#DEFINE constants (one for each OutStream in the application) in
CrFwOutStreamUserPar.h de�ne the destination associated to each
OutStream.

C2-OCM-1 Enable Check Operation of OutComponent #DEFINE constants (one for each kind of OutComponent in the ap-
plication) in CrFwOutFactoryUserPar.h de�ne the pointer to the
function implementing the operation. A default is provided a frame-
work level.

C2-OCM-2 Ready Check Operation of OutComponent #DEFINE constants (one for each kind of OutComponent in the ap-
plication) in CrFwOutFactoryUserPar.h de�ne the pointer to the
function implementing the operation. A default is provided a frame-
work level.

C2-OCM-3 Repeat Check Operation of OutComponent #DEFINE constants (one for each kind of OutComponent in the ap-
plication) in CrFwOutFactoryUserPar.h de�ne the pointer to the
function implementing the operation. A default is provided a frame-
work level.

c©
2
0
1
9
P
&
P
S
o
ftw

a
re

G
m
b
H
.
A
ll
R
ig
h
ts
R
eserv

ed
.

1
0
3

www.pnp-software.com

w
w
w
.
p
n
p
-
s
o
f
t
w
a
r
e
.
c
o
m

P
P
-U
M
-C
O
R
-0
0
0
2

R
ev
isio

n
1
.0

D
a
te

0
5
/
0
5
/
2
0
1
9

AP ID Adaptation Point Implementation

C2-OCM-4 Update Action of OutComponent #DEFINE constants (one for each kind of OutComponent in the ap-
plication) in CrFwOutFactoryUserPar.h de�ne the pointer to the
function implementing the operation. A default is provided a frame-
work level.

C2-OCM-5 Serialize Operation of OutComponent #DEFINE constants (one for each kind of OutComponent in the ap-
plication) in CrFwOutFactoryUserPar.h de�ne the pointer to the
function implementing the operation. A default is provided a frame-
work level.

C2-OLD-1 Initialization Check in Initialization Procedure
of OutLoader

Function pointer in CrFwOutLoaderUserPar.h. Default imple-
mentation which always returns 'check successful' is provided in
CrFwOutLoader.h.

C2-OLD-2 Initialization Action in Initialization Procedure
of OutLoader

Function pointer in CrFwOutLoaderUserPar.h. Default implemen-
tation which takes no action is provided in CrFwOutLoader.h.

C2-OLD-3 Con�guration Check in Reset Procedure of
OutLoader

Function pointer in CrFwOutLoaderUserPar.h. Default imple-
mentation which always returns 'check successful' is provided in
CrFwOutLoader.h.

C2-OLD-4 Con�guration Action in Reset Procedure of
OutLoader

Function pointer in CrFwOutLoaderUserPar.h. Default implemen-
tation which takes no action is provided in CrFwOutLoader.h.

C2-OLD-5 Shutdown Action of OutLoader Function pointer in CrFwOutLoaderUserPar.h. Default implemen-
tation which takes no action is provided in CrFwOutLoader.h.

C2-OLD-6 OutManager Selection Operation Function pointer in CrFwOutLoaderUserPar.h. Default implemen-
tation which always returns the �rst OutManager in the LOM is
provided in CrFwOutLoader.h.

C2-OLD-7 OutManager Activation Operation Function pointer in CrFwOutLoaderUserPar.h. Default implemen-
tation which takes no action is provided in CrFwOutLoader.h.

C2-OMG-1 Number of OutManagers in Application #DEFINE constants in CrFwOutManagerUserPar.h

C2-OMG-2 Size of POCL of OutManager #DEFINE constants (one for each OutManager) in
CrFwOutManagerUserPar.h

C2-ORG-1 Maximum Number of Trackable Command-
s/Reports for OutRegistry

#DEFINE constant in CrFwOutRegistryUserPar.h de�nes types, sub-
types and range of discriminant values supported by application.

c©
2
0
1
9
P
&
P
S
o
ftw

a
re

G
m
b
H
.
A
ll
R
ig
h
ts
R
eserv

ed
.

1
0
4

www.pnp-software.com

w
w
w
.
p
n
p
-
s
o
f
t
w
a
r
e
.
c
o
m

P
P
-U
M
-C
O
R
-0
0
0
2

R
ev
isio

n
1
.0

D
a
te

0
5
/
0
5
/
2
0
1
9

AP ID Adaptation Point Implementation

C2-ORG-2 Number of Service Types/Sub-Types supported
by Application

#DEFINE constant in CrFwOutRegistryUserPar.h de�nes types, sub-
types and range of discriminant values supported by application.

C2-ORG-3 Range of Services supported by Application #DEFINE constant in CrFwOutRegistryUserPar.h de�nes types, sub-
types and range of discriminant values supported by application.

C2-PCK-1 Operations to Report the Outcome of the Pro-
cessing and Execution of an Incoming Com-
mand

Implementation of CrFwRepInCmdOutcome.h. Only a test stub is
provided as default at framework level.

C2-ILD-1 Operation to Determine Re-Routing Destina-
tion of Packets

Function pointer in CrFwInLoaderUserPar.h. Default implementa-
tion is provided CrFwInLoader.h.

C2-ILD-1 Operation to Select InManager where Incoming
Report or Command is Loaded

Function pointer in CrFwInLoaderUserPar.h. Default implementa-
tion is provided CrFwInLoader.h.

C2-ICM-1 Validity Check for InCommand Function pointer in CrFwInFactoryUserPar.h. Default implemen-
tation which veri�es correctness of CRC is provided by function
CrFwInCmdDefValidityCheck.

C2-ICM-2 Ready Check of InCommand Function pointer in CrFwInFactoryUserPar.h. Default implemen-
tation is provided by function CrFwSmCheckAlwaysTrue.

C2-ICM-3 Start Action of InCommand Function pointer in CrFwInFactoryUserPar.h. Default implemen-
tation is provided by function CrFwSmEmptyAction.

C2-ICM-4 Progress Action of InCommand Function pointer in CrFwInFactoryUserPar.h. Default implemen-
tation is provided by function CrFwSmEmptyAction.

C2-ICM-5 Termination Action of InCommand Function pointer in CrFwInFactoryUserPar.h. Default implemen-
tation is provided by function CrFwSmEmptyAction.

C2-ICM-6 Abort Action of InCommand Function pointer in CrFwInFactoryUserPar.h. Default implemen-
tation is provided by function CrFwSmEmptyAction.

C2-IRP-1 Validity Check for InReport Function pointer in CrFwInFactoryUserPar.h. Default implemen-
tation which veri�es correctness of CRC is provided by function
CrFwInRepDefValidityCheck.

C2-IRP-2 Update Action of InReport Function pointer in CrFwInFactoryUserPar.h. Default implemen-
tation is provided at framework level.

c©
2
0
1
9
P
&
P
S
o
ftw

a
re

G
m
b
H
.
A
ll
R
ig
h
ts
R
eserv

ed
.

1
0
5

www.pnp-software.com

w
w
w
.
p
n
p
-
s
o
f
t
w
a
r
e
.
c
o
m

P
P
-U
M
-C
O
R
-0
0
0
2

R
ev
isio

n
1
.0

D
a
te

0
5
/
0
5
/
2
0
1
9

AP ID Adaptation Point Implementation

C2-IMG-1 Number of InManagers in Application #DEFINE constants in CrFwInManagerUserPar.h

C2-IMG-2 Size of PCRL of InManager #DEFINE constants (one for each InManager) in
CrFwInManagerUserPar.h

C2-IRG-1 Maximum Number of Trackable InCommand-
s/InReports in InRegistry

#DEFINE constant in CrFwInRegistryUserPar.h

C2-TIM-1 Operations to Get the Current Time Implementation of CrFwTime.h. Only a test stub is provided as
default at framework level.

C2-TYP-1 De�nition of Primitive Types De�nition of typedef.values in CrFwUserConstants.h. Default val-
ues are pre-de�ned in this header �le.

C2-CST-1 Identi�er of Host Application #DEFINE constant in CrFwUserConstants.h.

c©
2
0
1
9
P
&
P
S
o
ftw

a
re

G
m
b
H
.
A
ll
R
ig
h
ts
R
eserv

ed
.

1
0
6

www.pnp-software.com

	Referenced Documents
	Introduction
	Installation & Content Overview
	Dependency on C1 Implementation
	Dependency on External Libraries
	Source Code
	Support Documentation
	Doxygen Documentation
	Test Suite
	Acceptance Test Procedure and Test Reports
	Support Scripts
	Naming Conventions

	Framework and Service Concepts
	Software Framework Concept
	Service Concept
	Objectives of CORDET Framework
	Definition of Command and Report Concepts
	Definition of CORDET Components
	Definition of Standard Services

	Objectives of C2 Implementation
	Relationship To Packet Utilization Standard (PUS)
	Middleware Layer

	State Machine and Procedure Model
	State Machine Extension

	Component Model
	Component Hierarchy
	Component Implementation
	Component Data

	Adaptation Model
	Application Start-Up and Shut-Down
	Component Instantiation
	Application Start-Up

	Command and Report Concepts
	Command Concept
	The Command Attributes
	The Command Conditional Checks
	The Command Actions
	Command Lifecycle
	Mapping to C-Level Constructs

	Report Concept
	The Report Attributes
	The Report Conditional Checks
	The Report Actions
	Report Lifecycle
	Mapping to C-Level Constructs

	Packet Interface
	Middleware Assumptions
	Out-Going Interface
	Incoming Interface

	Packet Implementation
	Packet Interface Management
	The OutStream Component
	The OutStreamRegistry Component
	The InStream Component

	Command and Report Management
	Management of Out-Going Commands and Reports
	Management of Incoming Commands and Reports

	The OutComponent Component
	The OutLoader Component
	The OutManager Component
	The OutRegistry Component
	The InLoader Component
	The InCommand Component
	The InReport Component
	The InManager Component
	The InRegistry Component
	Memory Management
	Components with Late Instantiation

	Real Time Issues
	Scheduling of Framework Components
	Concurrency
	Recursion

	Error Handling
	Framework Instantiation Process
	Demo Application
	Adaptation Points

