
www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

The CORDET Framework

De�nition

P&P Software GmbH
High Tech Center 1

8274 Tägerwilen (CH)

Web site: www.pnp-software.com
E-mail: pnp-software@pnp-software.com

Written By: Alessandro Pasetti

Checked By: n.a.

Document Ref.: PP-DF-COR-0002

Issue: 2.0

Created On: 05/05/2019, at: 00:18

c©2019 P&P Software GmbH. All Rights Reserved. 1

www.pnp-software.com
www.pnp-software.com
mailto:pnp-software@pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

Contents

1 Change History 6

2 Referenced Documents 7

3 Introduction 8

3.1 Software Framework Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Service Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Objectives of CORDET Framework . . . . . . . . . . . . . . . . . . . . . . . 10

3.3.1 De�nition of Command and Report Concepts . . . . . . . . . . . . . . 11
3.3.2 De�nition of CORDET Components . . . . . . . . . . . . . . . . . . . 11
3.3.3 De�nition of Standard Services . . . . . . . . . . . . . . . . . . . . . . 12
3.3.4 De�nition of CORDET Components . . . . . . . . . . . . . . . . . . . 13

3.4 CORDET Support For Application Development . . . . . . . . . . . . . . . . 13
3.5 Relationship To Packet Utilization Standard (PUS) . . . . . . . . . . . . . . . 13
3.6 Middleware Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.7 Speci�cation Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.8 Heritage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Application Start-Up and Shut-Down 18

4.1 Component Instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Component-Level Start-Up and Shutdown . . . . . . . . . . . . . . . . . . . . 20
4.3 Application-Level Start-Up and shutdown . . . . . . . . . . . . . . . . . . . . 22

5 Command and Report Concept 25

5.1 Command Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1.1 The Command Attributes . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1.2 The Command Conditional Checks . . . . . . . . . . . . . . . . . . . . 27
5.1.3 The Command Actions . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.1.4 Command Lifecycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2 Report Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2.1 The Report Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2.2 The Report Conditional Checks . . . . . . . . . . . . . . . . . . . . . . 31
5.2.3 The Report Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.4 Report Lifecycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6 Packet Interface 34

6.1 Middleware Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.1.1 Out-Going Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.1.2 Incoming Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.2 Packet Interface Concept and Speci�cation . . . . . . . . . . . . . . . . . . . 36
6.2.1 The OutStream Component . . . . . . . . . . . . . . . . . . . . . . . . 37
6.2.2 The InStream Component . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2.3 The OutStreamRegistry Component . . . . . . . . . . . . . . . . . . . 45

7 Command And Report Management 47

7.1 Management of Out-Going Commands and Reports . . . . . . . . . . . . . . 47
7.1.1 The OutComponent Component . . . . . . . . . . . . . . . . . . . . . 49
7.1.2 The OutFactory Component . . . . . . . . . . . . . . . . . . . . . . . 52
7.1.3 The OutLoader Component . . . . . . . . . . . . . . . . . . . . . . . . 53
7.1.4 The OutManager Component . . . . . . . . . . . . . . . . . . . . . . . 56

c©2019 P&P Software GmbH. All Rights Reserved. 2

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

7.1.5 The OutRegistry Component . . . . . . . . . . . . . . . . . . . . . . . 58
7.2 Management of Incoming Commands and Reports . . . . . . . . . . . . . . . 61

7.2.1 The InFactory Component . . . . . . . . . . . . . . . . . . . . . . . . 63
7.2.2 The InLoader Component . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.2.3 The InCommand Component . . . . . . . . . . . . . . . . . . . . . . . 68
7.2.4 The InReport Component . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.2.5 The InManager Component . . . . . . . . . . . . . . . . . . . . . . . . 73
7.2.6 The InRegistry Component . . . . . . . . . . . . . . . . . . . . . . . . 76

A Veri�cation Models 78

A.1 The OutStream Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

c©2019 P&P Software GmbH. All Rights Reserved. 3

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

List of Figures

3.1 Software Framework Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Applications as Providers and Users of Services . . . . . . . . . . . . . . . . . 9
3.3 Services as Sets of Commands and Reports . . . . . . . . . . . . . . . . . . . 10
3.4 Re-Routing of Service Requests . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.5 Hierarchical De�nition of Services . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.6 Applications and Middleware . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1 Base State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Initialization and Reset Procedures . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Application State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1 Command Lifecycle (Informal Notation) . . . . . . . . . . . . . . . . . . . . . 30
5.2 Report Lifecycle (Informal Notation) . . . . . . . . . . . . . . . . . . . . . . . 33
6.1 Physical And Logical Connections . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2 Packet Interface Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.3 The OutStream State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.4 The InStream State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.5 The Packet Collect Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.1 Management of Out-Going Commands and Reports . . . . . . . . . . . . . . 48
7.2 The OutComponent State Machine . . . . . . . . . . . . . . . . . . . . . . . . 49
7.3 The Send Packet Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.4 The OutLoader Load Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.5 The OutManager Load Procedure . . . . . . . . . . . . . . . . . . . . . . . . 56
7.6 The OutManager Execution Procedure . . . . . . . . . . . . . . . . . . . . . . 57
7.7 The Registry Start Tracking and Registry Update Procedures . . . . . . . . . 59
7.8 The Enable State Determination Procedure . . . . . . . . . . . . . . . . . . . 60
7.9 The Management of Incoming Commands and Reports . . . . . . . . . . . . . 62
7.10 The InLoader Execution Procedure . . . . . . . . . . . . . . . . . . . . . . . . 65
7.11 The InLoader Load Command/Report Procedure . . . . . . . . . . . . . . . . 67
7.12 The InCommand State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.13 The InReport Execution Procedure . . . . . . . . . . . . . . . . . . . . . . . . 72
7.14 The InManager Load Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.15 The InManager Execution Procedure . . . . . . . . . . . . . . . . . . . . . . . 75

c©2019 P&P Software GmbH. All Rights Reserved. 4

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

List of Tables

1.1 Changes introduced in Revision 2.0 . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Changes introduced in Revision 1.6.1 . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Changes introduced in Revision 1.6 . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 Referenced documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1 Concerns of CORDET Framework and of PUS . . . . . . . . . . . . . . . . . 14
4.1 Factory Components Provided by CORDET Framework . . . . . . . . . . . . 19
4.2 Adaptation Points for Factory Components . . . . . . . . . . . . . . . . . . . 19
4.3 Requirements Applicable to Factory Components . . . . . . . . . . . . . . . . 19
4.4 Adaptation Points for Component Start-Up . . . . . . . . . . . . . . . . . . . 22
4.5 Requirements Applicable to Component Start-Up . . . . . . . . . . . . . . . . 22
4.6 Adaptation Points for Application Start-Up . . . . . . . . . . . . . . . . . . . 24
4.7 Requirements Applicable to Application Start-Up . . . . . . . . . . . . . . . . 24
6.1 Adaptation Points for OutStream Component . . . . . . . . . . . . . . . . . . 40
6.2 Requirements Applicable to OutStream Component . . . . . . . . . . . . . . 41
6.3 Adaptation Points for InStream Component . . . . . . . . . . . . . . . . . . . 44
6.4 Requirements Applicable to InStream Component . . . . . . . . . . . . . . . 45
6.5 Adaptation Points for OutStreamRegistry Component . . . . . . . . . . . . . 46
6.6 Requirements Applicable to OutStreamRegistry Component . . . . . . . . . . 46
7.1 Adaptation Points for OutComponent Component . . . . . . . . . . . . . . . 51
7.2 Requirements Applicable to OutComponent Component . . . . . . . . . . . . 52
7.3 Requirements Applicable to OutFactory Component . . . . . . . . . . . . . . 53
7.4 Adaptation Points for OutLoader Component . . . . . . . . . . . . . . . . . . 54
7.5 Requirements Applicable to OutLoader Component . . . . . . . . . . . . . . . 55
7.6 Adaptation Points for OutManager Component . . . . . . . . . . . . . . . . . 57
7.7 Requirements Applicable to OutManager Component . . . . . . . . . . . . . . 58
7.8 Adaptation Points for OutRegistry Component . . . . . . . . . . . . . . . . . 60
7.9 Requirements Applicable to OutRegistry Component . . . . . . . . . . . . . . 61
7.10 Requirements Applicable to InFactory Component . . . . . . . . . . . . . . . 64
7.11 Adaptation Points for InLoader Component . . . . . . . . . . . . . . . . . . . 67
7.12 Requirements Applicable to InLoader Component . . . . . . . . . . . . . . . . 68
7.13 Adaptation Points for InCommand Component . . . . . . . . . . . . . . . . . 70
7.14 Requirements Applicable to InCommand Component . . . . . . . . . . . . . . 71
7.15 Adaptation Points for InReport Component . . . . . . . . . . . . . . . . . . . 72
7.16 Requirements Applicable to InReport Component . . . . . . . . . . . . . . . . 73
7.17 Adaptation Points for InManager Component . . . . . . . . . . . . . . . . . . 75
7.18 Requirements Applicable to InManager Component . . . . . . . . . . . . . . . 76
7.19 Adaptation Points for InRegistry Component . . . . . . . . . . . . . . . . . . 77
7.20 Requirements Applicable to InRegistry Component . . . . . . . . . . . . . . . 77

c©2019 P&P Software GmbH. All Rights Reserved. 5

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

1 Change History

This section lists the changes made in the current revision. Changes are classi�ed according
to their type. The change type is identi�ed in the second column in the table according to
the following convention:

• "E": Editorial or stylistic change

• "L": Clari�cation of existing text

• "D": A feature present in the previous revision has been deleted

• "C": A feature present in the previous revision has been changed

• "N": A new feature has been introduced

Table 1.1: Changes introduced in Revision 2.0

Section Type Description

4.1 C Added Progress Step Identi�er attribute to com-
mands and modifed outcomes of progress action

4.1.1 N Added CRC attribute to commands

4.2.1 N Added CRC attribute to reports

5.2.1 N Added logic to compute and set the CRC in Out-
Components

6.2.2 N Added discussion of CRC check in the acceptance
check of an InCommand or InReport

6.2.3 C Added management of Progress Step Identi�er and
modi�ed management logic of progress action to be
compatible with 2016 release of PUS Standard

A.2 D Removed empty section on the formal veri�cation of
the InStream component

Table 1.2: Changes introduced in Revision 1.6.1

Section Type Description

All E Fixed missing heading changes

Table 1.3: Changes introduced in Revision 1.6

Section Type Description

5.1.2 E Minor editorial changes

5.2.1 E Fixed typo

5.2.2 C Modi�ed destination check in Packet Collect Pro-
cedure to match the description in the text; modi-
�ed InStream State Machine to explicitly cater for a
polling approach where command PacketAvailable

is sent to check whether a packet has arrived.

6.2.2 E Minor editorial changes

6.2.4 E Fixed typo in requirement IRP-3

c©2019 P&P Software GmbH. All Rights Reserved. 6

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

2 Referenced Documents

The documents referenced in the present document are listed in the table below.

Table 2.1: Referenced documents

Ref Description Doc. Number Iss.

[CR-UM] The CORDET Framework � User Manual PP-UM-COR-002 1.0

[CR-RQ] The CORDET Framework � Requirements PP-SP-COR-0002 1.0

[CR-AS] The ASSERT Project Web Site, http:

//www.esa.int/TEC/Software_engineering_

and_standardisation/TECJQ9UXBQE_0.html

[FW-SP] The Framework Pro�le (available from: www.

pnp-software.com/fwprofile)
Release 1.3.1

[PS-SP] Ground Systems and Operations, Telemetry and
Telecommand Packet Utilization Standard

ECSS-E-70-41C C

[PX-SP] The PUS Extension of the CORDET Frame-
work (available from: www.pnp-software.com/

cordetfw)

Release 0.2

c©2019 P&P Software GmbH. All Rights Reserved. 7

www.pnp-software.com
http://www.esa.int/TEC/Software_engineering_and_standardisation/TECJQ9UXBQE_0.html
http://www.esa.int/TEC/Software_engineering_and_standardisation/TECJQ9UXBQE_0.html
http://www.esa.int/TEC/Software_engineering_and_standardisation/TECJQ9UXBQE_0.html
www.pnp-software.com/fwprofile
www.pnp-software.com/fwprofile
www.pnp-software.com/cordetfw
www.pnp-software.com/cordetfw


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

3 Introduction

This document speci�es the CORDET Framework. The CORDET Framework is a software
framework for service-oriented embedded applications.

In terms of the classical software lifecycle, the speci�cation presented in this document is at
the level of software requirements in the sense that it de�nes a complete and unambiguous
logical model of the framework behaviour.

The next two sub-sections de�ne the concepts of software framework (sub-section 3.1) and of
service-oriented application (sub-section 3.2). The following sub-sections (from sub-section
3.3 to sub-section 3.7) explain how the CORDET Framework supports the development of
service-oriented applications. Finally sub-section 3.8 describes the heritage of the CORDET
Framework.

3.1 Software Framework Concept

A software framework is a repository of reusable and adaptable software components embed-
ded within a pre-de�ned architecture that is optimized for applications in a certain domain
(see �gure 3.1).

Fig. 3.1: Software Framework Concept

The framework components are reusable in the sense that they encapsulate behaviour which
is common to all (or at least a large number of) applications within the framework's domain.

To reuse a software components means to use it in di�erent operational contexts. In practice,
varying operational contexts always impose di�erent requirements. Hence, reuse requires
that the reusable components be adaptable to di�erent requirements. In this sense, adapt-
ability is the key to reusability. For this reason, framework components o�er adaptation
points where their behaviour can be modi�ed to match the needs of speci�c applications.

Framework components are embedded within a pre-de�ned architecture in the sense that the
framework does not simply specify individual components but it also speci�es their mutual
relationships. Thus, the unit of reuse of a software framework is not a component but rather
a group of cooperating components which, taken together, support the implementation of
some functionality that is important within the framework domain.

c©2019 P&P Software GmbH. All Rights Reserved. 8

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

Software frameworks encourage this higher granularity of reuse by being organized as a
bundle of functionalities that users can choose to include in their applications. Inclusion of
a functionality implies that a whole set of cooperating components and interfaces is imported
into the application.

In the service-oriented concept underlying the CORDET Framework, the functionalities
supported by the framework are the �services� as de�ned in the next section.

The domain of a framework is the set of applications whose instantiation is supported by
the framework. The domain of the CORDET Framework are the applications which comply
with the CORDET service Concept introduced in section 3.2.

3.2 Service Concept

The target domain of the CORDET Framework are service-oriented applications. This
section de�nes the service concept assumed in the CORDET Project (the CORDET Service
Concept).

A service is a set of logically and functionally related capabilities that an application o�ers
to other applications. The CORDET Service concept sees an application as a provider of
services to other applications and as a user of services from other applications (see �gure
3.2).

A service is identi�ed by its type. The service type is a positive integer which uniquely
identi�es the service within the CORDET world and thus acts as a name for the service.

Fig. 3.2: Applications as Providers and Users of Services

The user of a service controls the service by sending commands to the service provider. A
command is a data exchange between a service user and a service provider to start, advance,
modify, terminate, or otherwise control the execution of a particular activity within the
service provider (see reference [PS-SP], section 3.1.13).

The provider of a service sends reports to the user of the service. A report is a data exchange
between a service provider (the report initiator) and a service user to provide information
relating to the execution of a service activity (see reference [PS-SP], section 3.1.14).

Thus, a service consists of a set of commands which the user of the service sends to the
provider of the service and of a set of reports which the service provider sends back to
its user. A command de�nes actions to be executed by the service provider. A report

c©2019 P&P Software GmbH. All Rights Reserved. 9

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

encapsulates information about the internal state of the service provider (see �gure 3.3).

Fig. 3.3: Services as Sets of Commands and Reports

The same application may act as as a service provider to several user applications and, vice-
versa, it may use the services from several other providers. For instance, in �gure 3.2, the
Target Application has one user (Application A) and it acts as user for two service providers
(Applications B and C).

Figures 3.2 and 3.3 show situations where the service provider and service users have a direct
connection but the CORDET Service Concept also supports situations where the connection
between provider and user is indirect.

In �gure 3.4, for instance, application A sends a command to application C but the command
is routed through application B. Thus, the CORDET Service Concept can be used as a basis
for the de�nition of distributed applications which interact with each other by exchanging
service requests over a network.

The network de�nes physical links between the applications in the system (e.g. the links
between applications A and B and between applications B and C in �gure 3.4) and the
CORDET infrastructure de�nes logical links between the applications (e.g. the link between
applications A and C).

Fig. 3.4: Re-Routing of Service Requests

3.3 Objectives of CORDET Framework

In general terms, the goal of the CORDET Framework is to foster software reusability in
the development of service-oriented embedded control applications.

With a service-oriented concept, an application is speci�ed in terms of the services it o�ers
to other applications and of the services it needs from other applications and the services
are in turn speci�ed by the commands and reports which implement them.

In this perspective, the CORDET Framework supports reusability in the following ways:

1. It provides a formal de�nition of the abstract (implementation-independent) concept
of commands and reports,

2. It speci�es the components (the CORDET Components) which implement the abstract
command and report concepts and the CORDET Standard Services, and

c©2019 P&P Software GmbH. All Rights Reserved. 10

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

3. It allows services of general applicability for a speci�c domain to be pre-de�ned and
to be available as building blocks for the development of applications in that domain.

Each of the above points is discussed in greater detail in a dedicated sub-section below.

3.3.1 De�nition of Command and Report Concepts

The �rst objective of the CORDET Framework is to provide a formal de�nition of the
abstract command concept and of the abstract report concept.

This is done by building behavioural models of commands and of reports which:

1. capture the aspects of the behaviour of commands and reports which is common to
all commands and reports independently of the de�nition and implementation of a
concrete command or report, and

2. identify the adaptation points where service- and implementation-speci�c behaviour
can be added.

An example may clarify the de�nition given above. In section 5.1.2, the concept of Accep-
tance Check for commands is introduced. An acceptance check is a check that is performed
upon incoming commands to determine whether the command can be accepted or whether
it should be rejected. The abstract concept of command includes the following behavioural
property: �an incoming command shall be considered for execution by a service provider
only if it has passed its Acceptance Check�. This property is part of the abstract command
concept because it is common to all commands. The content of the Acceptance Check (i.e.
the type of check that is done on a speci�c incoming command) is, however, not part of the
abstract command concept because it depends on the concrete service to which a command
belongs.

Thus, the behavioural model for commands must guarantee that a successful Acceptance
Check is a pre-condition for the execution of a command and it must identify the content
of the Acceptance Check as an adaptation point for the command.

Note that the de�nition of an abstract command and report concept allows the speci�cation
of services to be standardized and it therefore is a precondition for the second and third
objectives of the CORDET Framework.

The abstract command concept and the abstract report concept are de�ned in, respectively,
sections 5.1 and 5.2.

3.3.2 De�nition of CORDET Components

The second objective of the CORDET Framework is to specify the components which im-
plement the abstract command and report concepts (the CORDET Components). These
components are intended for deployment in service-oriented applications. More speci�cally,
the CORDET Components cover, on the service user side, the sending of commands and
the reception and distribution of reports and, on the service provider side, the processing of
incoming commands and the generation of reports.

The CORDET Framework only speci�es the CORDET Components but does not implement
them. The speci�cation is, however, done using the FW Pro�le (see section 3.7) and it
therefore consists of a complete behavioural model. An implementation could in principle
be automatically generated from the model.

c©2019 P&P Software GmbH. All Rights Reserved. 11

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

The CORDET Framework de�nes the behavioural models for the service components. Mul-
tiple implementations can be derived from these models. All implementations are func-
tionally equivalent (because they implement the same behavioural model) but they dif-
fer in the choice of implementation language, of implementation technology, or of other
implementation-level aspects.

Note that the CORDET components are framework-level components. Hence, application
developers may have to specialize them further before using them. Two approaches are
possible in this respect: (a) the application takes over an existing implementation of the
CORDET components and specializes them, or (b) the application specializes the models
of the CORDET Framework and then implements the specialized models.

3.3.3 De�nition of Standard Services

The third objective of the CORDET Framework is to allow sets of standard services to be
de�ned. These services are intended to cover functionalities which are common to applica-
tions within a certain domain. The standard services are therefore o�ered as building blocks
for the applications in that domain: an application in the domain is speci�ed and built as a
combination of standard services (which are re-used) and application-speci�c services (which
are developed for each speci�c application).

The standard services are de�ned by de�ning their commands and reports and the commands
and reports are de�ned as specializations of the abstract command and report concepts
(see section 3.3.1). Thus, a standard service is de�ned by �closing� the adaptation points
identi�ed in the abstract command and report concepts.

The CORDET Framework promotes a hierarchical de�nition of services as illustrated in
�gure 3.5. At the top layer, there is the abstract de�nition of commands and reports.
This de�nition is entirely generic and applicable to all services in all application. At the
intermediate level, standard services are de�ned which capture concrete behaviour which is
common to a large number of applications. These standard services could be de�ned either
by the CORDET Framework itself or by organizations which identify commonalities among
the applications of interest to them. Finally, at the bottom level, end-applications de�ne
their own services which are entirely speci�c to their needs. The application-level services
may be either taken over from the standard services or they may be created as instantiations
of the generic service concept (if they are entirely application-speci�c).

Fig. 3.5: Hierarchical De�nition of Services

c©2019 P&P Software GmbH. All Rights Reserved. 12

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

3.3.4 De�nition of CORDET Components

The third objective of the CORDET Framework is to specify the components which imple-
ment the abstract command and report concepts and the standard services (the CORDET
Components). These components are intended for deployment in service-oriented applica-
tions. More speci�cally, the CORDET Components cover, on the service user side, the
sending of commands and the reception and distribution of reports and, on the service
provider side, the processing of incoming commands and the generation of reports.

The CORDET Framework speci�es the CORDET Components using the FW Pro�le (see
section 3.7) and it therefore consists of a complete behavioural model.

The CORDET Framework de�nes the behavioural models for the service components. Mul-
tiple implementations can be derived from these models. All implementations are func-
tionally equivalent (because they implement the same behavioural model) but they dif-
fer in the choice of implementation language, of implementation technology, or of other
implementation-level aspects.

Note that the CORDET components are framework-level components. Hence, application
developers may have to specialize them further before using them. Two approaches are
possible in this respect: (a) the application takes over an existing implementation of the
CORDET components and specializes them, or (b) the application specializes the models
of the CORDET Framework and then implements the specialized models.

3.4 CORDET Support For Application Development

The CORDET Framework supports the development of a service-oriented application in the
following ways:

1. The framework standardizes the command and report concepts. This allows a target
application to be speci�ed in terms of standardized features.

2. The framework speci�es pre-de�ned components to implement the generic service con-
cept. This allows a target application to reuse these components.

Note that the support described above is a speci�cation-level reuse: the target application
imports the speci�cation of the standard services. Thus, the CORDET Framework simpli�es
the speci�cation of a target application because it allows that application to be speci�ed in
terms of standardized features and components.

Obviously, organizations which have developed an implementation of the CORDET com-
ponents or which are using a third-party implementation of the CORDET Components
can extend the bene�ts of the CORDET approach also to the implementation level. Fur-
ther bene�ts can be derived by applications which have de�ned - at speci�cation and/or at
implementation level - standard services which are useful in their domain of interest.

3.5 Relationship To Packet Utilization Standard (PUS)

The Packet Utilization Standard or PUS is an application-level interface standard for space-
based applications. It is speci�ed in reference [PS-SP]. In spite of its origin in the space
industry, the PUS is suitable for a wide range of embedded control applications. In view of
its long heritage and its proven ability to cover the interface needs of mission-critical systems
of distributed applications, the PUS has been used as a basis for the CORDET Framework
in the sense that the service concept on which the CORDET Framework is based (see section

c©2019 P&P Software GmbH. All Rights Reserved. 13

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

3.2) is the same as the service concept speci�ed by the PUS.

In order to understand the degree of overlap between the PUS and the CORDET Framework,
it is helpful to identify and contrast their respective concerns (the remainder of this section
can be omitted by readers without a background in the space industry).

The PUS has two concerns: (a) it standardizes the semantics of the commands and reports
which may be sent to or received from an application, and (b) it standardizes the external
representations of these commands and reports (i.e. it speci�es the layout of the packets
which carry the commands and reports). The CORDET Framework shares the �rst concern
in the sense that it uses the same service concept as the PUS but it does not share the
second concern because it does not specify the external representation of commands and
reports. Instead, the CORDET Framework speci�es their internal representation (i.e. it
prede�nes components to encapsulate commands and reports within an application) and
it treats their serialization to, and de-serialization from, physical packets as an adaptation
point to be resolved at application level.

Thus, the CORDET Framework can be used to instantiate applications which are PUS-
compliant but it is not restricted to PUS-compliant applications because it could be used to
instantiate an application which uses a di�erent external representation for its commands
and reports than is speci�ed by the PUS.

Table 3.1 summarizes the concerns of the CORDET Framework and of the PUS.

Table 3.1: Concerns of CORDET Framework and of PUS

Concern Coverage in CORDET Framework and PUS

Service Concept CORDET Framework uses the same service concept as the PUS.

External
Representation of
Commands and
Reports

The PUS speci�es the external representation of its commands
and reports (i.e. it speci�es the layout of the packets carrying
the commands and reports). The CORDET Framework does not
specify the external representation of its commands and reports.

Internal
Representation and
Handling of
Commands and
Reports

The PUS does not specify how its commands and reports should
be represented and handled inside an application. The CORDET
Framework speci�es the components representing the commands
and reports in an application and the components required to
handle them within that application.

In addition to the service concept, the PUS also de�nes the concept of application process
which is matched in the CORDET Framework by the concept of application. The two
concepts, though overlapping, have slightly di�erent meanings. In the PUS, an application
process is a source of reports and a sink for commands (see section 4.2.1 of reference [PS-
SP]). In the CORDET Framework, an application is a node within a CORDET service-
based distributed system. A CORDET application may therefore be both a source and a
destination for both commands and reports.

Generally speaking, a CORDET application may contain several PUS application processes.
In order to allow multiple PUS application processes to be mapped to a single CORDET
application, the CORDET Framework has introduced the concept of group. Commands and
reports in an application must belong to a group. A PUS application process may thus be
represented within a CORDET application by a group. This is done by de�ning a group
for each application process and by allocating all the commands and reports belonging to

c©2019 P&P Software GmbH. All Rights Reserved. 14

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

an application process to the same group. CORDET systems which do not aim at PUS
compliance will normally not need the group concept and may just de�ne one single group
to which all commands and reports in the system belong by default.

3.6 Middleware Layer

The CORDET Framework is an application-level framework and its domain is the man-
agement of services. Service messages encapsulating commands and reports are exchanged
between applications. The mechanism through which these messages are sent from one ap-
plication to another is outside the scope of the framework. The framework assumes that a
middleware layer is present which can be used to send and receive messages to and from
other applications.

Commands and reports travel on the middleware as packets. A packet is an ordered sequence
of bytes that contains all the information required to reconstruct a report or command. The
layout of command and report packets is not speci�ed by the CORDET Framework. An
example of command and packet layout is speci�ed in reference [PS-SP].

The process whereby a command or report is transformed into its packet is called serializa-
tion. The inverse process whereby a command or report is interpreted and the equivalent
report or command is reconstructed is called deserialization.

The assumptions made by the framework about the middleware are speci�ed in section 6.1.
The general concept is shown in �gure 3.6. The CORDET Framework only covers the yellow
boxes shown in the �gure which represent the service-aware parts of a system.

Fig. 3.6: Applications and Middleware

3.7 Speci�cation Format

This document speci�es the CORDET Framework. The framework is speci�ed by de�ning
its requirements. The requirements of the framework are of four types:

• Standard Requirements which de�ne a desired feature of the framework. They are
analogous in scope and format to the user requirements of an ordinary (non-framework)
software application.

• Adaptation Requirement which de�ne the points where the framework behaviour can
be extended by the application developers. In some cases, the de�nition of an adap-
tation point is accompanied by the de�nition of the default options o�ered by the
framework for that adaptation point.

• Usage Constraint Requirements which de�ne the constraints on how the components
o�ered by the framework may be used by application developers.

• Property Requirements which de�ne behavioural properties which are guaranteed to
hold on all applications which: (a) are instantiated from the framework by closing its

c©2019 P&P Software GmbH. All Rights Reserved. 15

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

adaptation points, and (b) comply with the framework's usage constraints.

To each framework requirement an identi�er is attached. The requirement identi�er takes
the following form: x-y/t where 'x' is an acronym identifying the function to which the
requirement applies; 'y' is a unique identi�er within that function; and 't' identi�es the
requirement type. The type is designated by one single letter as follows: 'S' for the Stan-
dard Requirements, 'A' for the Adaptation Requirements, 'C' for the Usage Constraint
Requirements and 'P' for the Property Requirements.

The speci�cation of the framework includes a behavioural model of the framework which
describes its behaviour and identi�es the adaptation points where application developers
can extend this behaviour to match their requirements.

The behavioural model of the framework is de�ned using the FW Pro�le of reference [FW-
SP]. It therefore consists of a set of state machines (represented as state charts) and proce-
dures (represented as activity diagrams). Familiarity with the FW Pro�le is essential for a
full understanding of the framework requirements.

Wherever possible, the framework requirements simply make the state machines and pro-
cedures applicable. In other words, the state charts representing state machines and the
activity diagrams representing procedures are treated as normative and no attempt is made
to translate them into a comprehensive set of equivalent requirements.

State machines and procedures normally imply certain behavioural properties. For simplic-
ity, properties which are inherent to a single state machine or procedure are not explicitly
de�ned in dedicated property requirements. Instead, a generic property requirement is
stated which makes the state machine or procedure applicable. The properties are also
described in the informal description that accompanies the requirements.

Property requirements are only stated explicitly when the property they enunciate arises
from the interaction of several state machines or procedures. In such cases, a formal veri�-
cation of the property may also be o�ered. This is normally done on a Promela model. The
Promela models used in this document are presented in appendix A.

In accordance with the FW Pro�le, the activity diagrams and state diagrams identify the
framework adaptation points using the �AP� stereotype (but note that not all adaptation
points are identi�ed explicitly in activity or state diagrams). For convenience, all adap-
tation points with their default options are listed in dedicated tables. In most cases, the
adaptation requirements simply make the items in such tables applicable. By default, the
implementation mechanism for the adaptation points is left open and is not covered by this
speci�cation.

In some cases, requirements are formulated which constrain an adaptation point to be
closed at compile time (i.e. the requirement mandates the static de�nition of the behaviour
to be associated to the adaptation point and it forbids a situation where the application
dynamically � at run-time � changes this behaviour).

Some of the components speci�ed by the CORDET Framework are de�ned as extensions of
other CORDET components. In such cases, the extended component is derived from the
base component by either overriding or closing some of its adaptation points. A derived
component overrides an adaptation point of its base component when it changes the default
behaviour associated to that adaptation point (but applications can still change that be-
haviour). A derived component closes an adaptation point of its base component when it

c©2019 P&P Software GmbH. All Rights Reserved. 16

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

de�nes in a �nal way the behaviour associated to that adaptation point (i.e. applications
can no longer change that behaviour).

3.8 Heritage

The service concept on which the CORDET Framework is based is the same as the service
concept of the �Packet Utilization Standard� or PUS. The PUS is speci�ed in reference
[PS-SP] as an application-level interface standard for space-based applications. In spite of
its origin in the space industry, the PUS is suitable for a wider range of embedded control
applications and was for this reason selected as a basis for the CORDET Framework.

The models of the CORDET Components are based on models de�ned in past research
projects (see references [CR-AS] and [CR-CR) and on the OBS Framework Design Patterns
(see reference [CR-OB]).

An earlier version of the CORDET Framework was used as the basis for the de�nition
and design of an industrial-quality framework for the diagnostic instruments of a major
pharmaceutical company. The viability of the design patterns and concepts behind the
CORDET Framework is therefore demonstrated at industrial level.

c©2019 P&P Software GmbH. All Rights Reserved. 17

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

4 Application Start-Up and Shut-Down

This section de�nes the requirements applicable to the start-up and shutdown of an appli-
cation instantiated from the CORDET Framework.

The start-up process is divided into two stages: initialization and con�guration. The ini-
tialization stage covers actions which are performed only at start-up time and which cannot
be repeated until the application is shutdown. The con�guration stage covers actions which
are performed at start-up time but which may also be performed at a later stage if there is
a need to reset either the entire application or a part of it.

In this document, the term shutdown is used to designate the orderly shutdown of an
application or component. Obviously, applications and components may also undergo an
emergency shutdown. This is entirely uncontrolled and is not speci�ed in any way by the
CORDET Framework.

The start-up and shutdown processes are speci�ed at two levels: at the level of individual
components and at the level of the entire application which are described in, respectively,
sections 4.2 and 4.3.

Before they are initialized and con�gured, components must be instantiated. Most com-
ponents required by an application are instantiated as part of that application start-up
(early component instantiation). In some cases, components may need to be instantiated
during the application's normal operation (late component instantiation). The two forms of
components instantation are discussed in section 4.1.

4.1 Component Instantiation

Components may be instantiated either early or late. Early instantiation takes place as part
of the application start-up. This is required by the logic of the Application State Machine
of section 4.3.

Late instantiation can take place at any time during the application's normal operation (i.e.
while the Application State Machine of section 4.3 is in state NORMAL).

The CORDET Framework encapsulates the late instantiation of components in factory
components. More precisely, the CORDET Framework speci�es that factory components
be de�ned for all component types which may be instantiated during normal operation (see
table 4.1).

The component instantiation process is entirely application-speci�c. Hence, at framework
level, factory components are de�ned exclusively in terms of their API. A factory component
is a component which o�ers two operations: a Make operation to create an instance of a
component of a certain type and a Release operation to reclaim a component instance of
that type which is no longer needed within its host application.

The Make operation takes as arguments the information required to instantiate and, possibly,
initialize and/or con�gure the target component. The arguments of the Make operation
therefore depend on the type of component to be instantiated by the factory.

The Make operation can either fail or succeed. If it fails (perhaps because the available
resources do not allow the creation of a new command instance), it returns nothing. If it
succeeds, it returns a component instance of the speci�ed kind. Depending on the allocation

c©2019 P&P Software GmbH. All Rights Reserved. 18

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

policy used internally in the factory, the instantiated component may be either in state
CREATED, or in state INITIALIZED, or in state CONFIGURED (see section 4.2). It is
then the responsibility of the host application to initialize and/or con�gure the instantiated
component.

Note that, if a failure of the Make operation represents an error, this must be handled by
the user of the factory. The factory itself does not perform any error handling.

The Release operation is provided for the case of applications which wish to manage a pool
of pre-allocated component instances. The operation takes the component to be released
as its argument. After the release operation has been called on a component instance, that
component instance must not be used again by the application.

Table 4.1 lists all factory components pre-de�ned by the CORDET Framework. The re-
quirements at the end of this section apply to all factory components. Requirements which
are speci�c to a particular kind of factory component are de�ned in dedicated sections in
the remainder for this document (see last column of table 4.1).

Applications may provide additional factory components if they need to instantiate application-
speci�c components during normal operation.

Table 4.1: Factory Components Provided by CORDET Framework

Name Purpose of Factory Components Section

OutFactory Instantiation of OutComponents (components en-
capsulating an out-going command or report, see sec-
tion 7.1.1)

7.1.2

InFactory Instantiation of InReports and InCommands (com-
ponents encapsulating incoming reports and com-
mands, see sections 7.2.3 and 7.2.4)

7.2.1

Table 4.2: Adaptation Points for Factory Components

AP ID Adaptation Point Default Value

FAC-1 MakeOperation to dynamically
instantiate a component

No default provided at framework level

FAC-2 Release Operation to dynam-
ically release a component

No default provided at framework level

Table 4.3: Requirements Applicable to Factory Components

Req. ID Requirement Text

P-FAC-1/S The factory components shall be provided as extensions of the Base Compo-
nent.

P-FAC-2/S The factory components shall de�ne an API o�ering two operations: Make

and Release.

P-FAC-3/S The Make operation shall either fail and return nothing or succeed and return
a component instance of the type speci�ed by the Make arguments.

P-FAC-4/S The Release operation shall take as argument the component instance to be
released.

P-FAC-5/A The factory components shall support the adaptation points FAC-*.

c©2019 P&P Software GmbH. All Rights Reserved. 19

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

Req. ID Requirement Text

P-FAC-6/C An application shall instantiate factory components only once.

P-FAC-7/C An application shall not use a component instance which has been released
through a call to operation Release.

4.2 Component-Level Start-Up and Shutdown

The start-up and shutdown process of a CORDET component is de�ned by the Base State
Machine of �gure 4.1. Its logic can be summarized as follows.

Fig. 4.1: Base State Machine

Initially, after being instantiated, framework components are in state CREATED. The host-
ing application is then expected to provide to each component the information it needs to
perform its initialization. The type of this information is component-speci�c. After the
necessary information has been provided, the application sends an Init command to the
component. The component responds by running its Initialization Procedure. This proce-
dure is responsible for initializing the component and is de�ned in �gure 4.2.

The Initialization Procedure is based on an Initialization Check and an Initialization Action.
Both the check and the action are adaptation points which must be de�ned for each individ-
ual component. The Initialization Check normally checks that all parameters required for
the component initialization have legal values. The Initialization Action is only performed
if the Initialization Check was successful. This action normally creates all data structures
required by the component and it performs other initialization actions as required. The
Initialization Action can either fail or succeed.

The Initialization Procedure terminates in one single cycle with an outcome of either �Suc-
cess� of �Failure�. Only the �Success� outcome is nominal and leads to the component making
a transition to state INITIALIZED.

After successful initialization, the application provides to the component the information
required to con�gure it and then sends a Reset command to it. The component responds
by running its Reset Procedure. This procedure is responsible for con�guring the component
and is de�ned in �gure 4.2.

The Reset Procedure is based on a Con�guration Check and a Con�guration Action. Both
the check and the action are adaptation points which must be de�ned for each individual
componet. The Con�guration Check normally checks that all parameters required for the

c©2019 P&P Software GmbH. All Rights Reserved. 20

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

component con�guration have legal values. The Con�guration Action is only performed if
the Con�guration Check was successful. This action normally initializes the value of all
data structures required by the component and it performs other con�guration actions as
required. The Con�guration Action can either fail or succeed.

The Reset Procedure terminates in one single cycle with an outcome of either �Success� of
�Failure�. Only the �Success� outcome is nominal and leads to the component making a
transition to state CONFIGURED.

Fig. 4.2: Initialization and Reset Procedures

State CONFIGURED is the normal operational state of a component. In this state, the
component executes its Execution Procedure. This procedure must be entirely de�ned at
application level.

A component can be reset at any time by sending it command Reset. Nominally, this results
in the component executing again its con�guration actions and re-entering its CONFIG-
URED state. However, if any of the component parameters are found to have non-nominal
values or if any of the con�guration actions fail, then the component makes a transition to
state INITIALIZED. This is a non-nominal situation.

Thus, the distinction between initialization actions and con�guration actions is that the
former are actions that, nominally, are performed only once during the life of an application
whereas the latter are actions which may be performed more than once.

Note that there is no distinction between the actions that are performed when a component
is con�gured for the �rst time during application start-up and the actions that are performed
when a component is reset at run-time. This is intentional because resetting a component
should bring it to the same state in which it was when the application had completed its
start-up.

All framework components implement the behaviour de�ned by the Base State Machine.
In general, the �meaningful� behaviour of a framework component is de�ned within the
CONFIGURED state. This �meaningful� behaviour is de�ned either by implementing an
Execution Procedure or by embedding a state machine within the CONFIGURED state.

Components are shut down by sending them command Shutdown. This command results

c©2019 P&P Software GmbH. All Rights Reserved. 21

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

in the shutdown action being executed on the component. Note that components can only
be shutdown from state CONFIGURED. This is because the Shutdown operation models
an orderly shutdown which should only be performed after an application has successfully
completed its start-up.

All components provided by the CORDET Framework are guaranteed to implement the
behaviour of the Base State Machine. Application developers will normally have to pro-
vide additional components implementing their own application-speci�c functionalities. The
CORDET Framework is designed on the assumptions that these components, too, will im-
plement the behaviour of the Base State Machine.

The tables at the end of this section list the adaptation points and the requirements appli-
cable to the component start-up function.

Table 4.4: Adaptation Points for Component Start-Up

AP ID Adaptation Point Default Value

BAS-1 Initialization Check in Ini-
tialization Procedure of Base
Component

Always returns: 'check successful'

BAS-2 Initialization Action in Ini-
tialization Procedure of Base
Component

Do nothing and return: 'action successful'

BAS-3 Con�guration Check in Reset
Procedure of Base Component

Always returns: 'check successful'

BAS-4 Con�guration Action in Reset
Procedure of Base Component

Do nothing and return: 'action successful'

BAS-5 Shutdown Action of Base Com-
ponent

Do nothing

BAS-6 Execution Procedure of Base
Component

Do the same dummy action (return without
doing anything) whenever the procedure is
executed

Table 4.5: Requirements Applicable to Component Start-Up

Req. ID Requirement Text

P-BAS-1/S All components provided by the CORDET Framework shall implement the
behaviour of the Base State Machine of �gure 4.1.

P-BAS-2/S The CORDET Framework shall implement an API through which applica-
tions can query a CORDET Component for its current state (including, if
applicable, its current sub-state).

P-BAS-3/C All components provided by application developers shall implement the be-
haviour of the Base State Machine.

4.3 Application-Level Start-Up and shutdown

The CORDET Framework de�nes the Application State Machine of �gure 4.3 to model the
start-up and shutdown logic of an application.

When the application is created, the Application State Machine is in state START_UP.

c©2019 P&P Software GmbH. All Rights Reserved. 22

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

In this state, the Application Start-Up Procedure is executed. This procedure is entirely
de�ned at application level but is subject to two constraints: (a) the procedure must in-
clude the instantiation, initialization and con�guration of all components subject to early
instantiation, and (b) the procedure may only terminate if successful con�guration of all
components subject to early instantiation is con�rmed (i.e. if all these components are in
state CONFIGURED).

Normal operation takes place in state NORMAL. In particular, the services provided by
an application to its users are only guaranteed to be available when the application is in
state NORMAL and it is only from this state that the application makes use of the services
provided by other applications. Thus, in state NORMAL, an application may assume that
its service interfaces are all operational.

An application can be reset by sending command Reset to its Application State Machine.
This causes a transition to state RESET where the Application Reset Procedure is executed.
This procedure is entirely de�ned at application level but is subject to two constraints:
(a) the procedure must include the sending of the Reset command to all currently insta-
tiated components, and (b) the procedure may only terminate if all currently instantiated
components are in state CONFIGURED.

It follows from the logic outlined above that, when the application is in state NORMAL, all
its statically instantiated components are guaranteed to be correctly con�gured (i.e. they
are guaranteed to be in state CONFIGURED).

The Application Start-Up Procedure and the Application Reset Procedure will normally share
much behaviour but they may not coincide because there may be some actions which are
only executed once when an application is started up (such as, for instance, the initialization
of all application components).

Finally, the orderly shutdown of an application is performed by sending command Shutdown

to the Application State Machine. This triggers a transition to state SHUTDOWN where
the Application Shutdown Procedure is executed. This procedure is entirely de�ned at
application level but is subject to one constraint: the procedure must include the sending
of the Shutdown command to all currently instantiated components.

Fig. 4.3: Application State Machine

Applications may (and normally will) de�ne embedded state machines in the states shown in
�gure 4.3. In particular, applications normally have several operational states which would
appear as sub-states of NORMAL.

c©2019 P&P Software GmbH. All Rights Reserved. 23

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

Table 4.6: Adaptation Points for Application Start-Up

AP ID Adaptation Point Default Value

AST-1 Application Start-Up Proce-
dure

No default provided at framework level

AST-2 Application Reset Procedure No default provided at framework level

AST-3 Application Shutdown Proce-
dure

No default provided at framework level

AST-4 State Machine Embedded in
state START_UP of Applica-
tion State Machine

No state machine embedded in state
START_UP

AST-5 State Machine Embedded in
state NORMAL of Application
State Machine

No state machine embedded in state NOR-
MAL

AST-6 State Machine Embedded in
state RESET of Application
State Machine

No state machine embedded in state RESET

AST-7 State Machine Embedded in
state SHUTDOWN of Applica-
tion State Machine

No state machine embedded in state SHUT-
DOWN

Table 4.7: Requirements Applicable to Application Start-Up

Req. ID Requirement Text

P-AST-1/S The CORDET Framework shall implement the Application State Machine of
�gure 4.3.

P-AST-2/A The Application State Machine shall support the adaptation points AST-*.

P-AST-3/S The CORDET Framework shall provide an API through which applications
can query the Application State Machine for its current state.

P-AST-4/C The Application Start-Up Procedure shall include the instantiation, initializa-
tion and con�guration of all components subject to early instantiation.

P-AST-5/C The application Start-Up Procedure shall only terminate if all components
subject to early instantiation are in state CONFIGURED.

P-AST-6/C The Application Reset Procedure shall include the sending of command Reset

to all application components.

P-AST-7/C The Application Reset Procedure shall only terminate if all application com-
ponents are in state CONFIGURED.

P-AST-8/C The Application Shutdown Procedure shall include the sending of command
Shutdown to all application components.

c©2019 P&P Software GmbH. All Rights Reserved. 24

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

5 Command and Report Concept

This section describes the command and report concept assumed by the CORDET Frame-
work. Based on these concepts, the next section will de�ne the requirements applicable to
the management of commands and reports by the CORDET Framework.

This section considers commands and reports at the abstract level only (see section 3.3.1).
The commanding and reporting models described here are therefore applicable to any com-
mand or report, irrespective of the speci�c service to which they belong or of the speci�c
activities which the command triggers or of the speci�c information which the report carries.
Concrete commands and reports are de�ned by applications according to their needs. These
concrete commands and reports are de�ned as specializations of the generic command and
report concepts described in the present section.

5.1 Command Concept

Each command belongs to a service. Within that service, the command is identi�ed by the
sub-type (a positive integer). Thus, a command is fully identi�ed by a pair [x,y] where 'x'
is the identi�er of the service to which the command belongs (the service type, see section
3.2) and 'y' is the identi�er of the command within the service (the command sub-type).

Commands are types which are instantiated at run-time. A command is generated by a
service user in order to trigger the execution of certain actions by the service providers.
Thus, a command instance begins its life when the application on the service user side (the
user application) decides that it wishes to issue a request to the application on the service
provider side (the provider application).

A command is sent by the user application to the provider application where it triggers the
execution of certain actions. Before being sent to the provider application, the command
is con�gured. Through the con�guration process, the command acquires the information
it will need to execute its actions. The command's actions in the provider application are
executed in a sequence of steps which may extend over time. Both the sending of the
command to its destination and the execution of its actions in the provider application are
conditional upon certain checks being passed. The command encapsulates both the actions
that must be executed and the conditional checks that determine whether the command is
sent and whether its actions are executed.

The same command instance may be sent to its destination more than once. This models
the situation where a user is issuing periodic requests to a service provider. In this case, the
content of the command is updated every time the command is sent to its destination. It is
a logical error to re-send a command instance to its destination before the actions triggered
by the previous execution of the same command have completed.

A command is de�ned by its attributes, its conditional checks, and its actions.

Attributes designate characteristics that are entirely de�ned by their value. Actions and
conditional checks designate executable functionalities that are associated to the command.
Both actions and conditional checks are executed by the command as a result of changes
in its internal state. The conditional checks are used to determine whether and when the
command actions are executed.

The next three subsections further de�ne the command attributes, the command conditional

c©2019 P&P Software GmbH. All Rights Reserved. 25

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

checks, and the command actions. The last sub-section describes the lifecycle of a command.

5.1.1 The Command Attributes

An attribute is a characteristics that is entirely de�ned by its value. A command has the
following attributes:

• Service Type: Each command contributes to implementing a service. This attribute
identi�es the service that the command implements.

• Command Sub-Type: Each service is implemented by several commands. This
attribute identi�es the type of the command within a certain service.

• Command Identi�er: A command may exist in two distinct applications (the user
application which sends the command and the provider application which receives it).
This attribute uniquely identi�es the command instance within both applications and
throughout the life of both applications.

• Destination Commands are generated by a user application for a provider appli-
cation. This attribute identi�es the provider application for which the command is
intended.

• Source Commands are generated by a user application for a provider application.
This attribute identi�es the user application which issues the command.

• Time Stamp: The time when the user application makes the request to send the
command to its destination.

• Group Commands sent by a user application to the same destination are allocated
to a group. This attribute identi�es the group to which the command belongs. The
concept of group is primarily relevant to applications which aim at PUS-compliance
(see section 3.5).

• Sequence Counter Every time a user application issues a command belonging to
a certain destination group, it increments a counter. The sequence counter attribute
holds the value of this counter. The sequence counter can be used by the recipient
application to check whether any commands addressed to it have been lost.

• Acknowledge Level Command execution goes through four stages: acceptance,
start, progress, and termination (see section 5.1.4). This attribute determines whether
successful completion of each of these stages should be reported to the sender of the
command. Note that failure to complete a stage is reported unconditionally.

• Progress Step Identi�er On the service provider side, a command is executed in a
sequence of progress steps. Each progress step is identi�ed by a positive integer (but
note that step identi�ers are not necessarily in sequence). This attribute holds the
identi�er of the current step. A command must have at least one step. This attribute
is only meaningful on the service provider side.

• Command Parameters Some commands may require parameters to fully specify
the actions and checks that they encapsulate. The �Command Parameters� attribute
holds the value of these parameters. This attribute consists of an ordered sequence of
items of primitive type.

• Discriminant The number and type of command parameters in a command instance
is not necessarily determined by the command type (i.e. di�erent instances of the same
command type may have di�erent sets of command parameters). The discriminant is
a command parameter which determines the number and type of the other command
parameters.
Thus, the layout of a command instance is fully determined by the triplet: [x,y,z]

c©2019 P&P Software GmbH. All Rights Reserved. 26

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

where 'x' is the identi�er of the service to which the command belongs (the service
type), 'y' is the identi�er of the command within the service (the command sub-type),
and 'z' is the discriminant.
The discriminant is an optional attribute. Command types which have no parameters,
or which have a �xed set of parameters, have no discriminant.

• CRC A command carries a checksum which is set by the command's sender and
which the recipient of the command can use to verify the integrity of the command's
transmission.

5.1.2 The Command Conditional Checks

A conditional check is an executable functionality which returns an enumerated value. The
enumerated value reports the outcome of the check. Conditional checks are performed as
part of the processing of a command. Their outcome determines whether and when the
command actions are preformed. Conditional checks must have zero logical execution time.
This restriction allows them to be mapped to guards in state machines.

Some checks are performed on the user's side (i.e. prior to the command being issued by
the user application); others are performed on the provider's side (i.e. after the command
has been received by the provider application).

The following conditional checks are de�ned for a command on the service user side:

• Enable Check This check is performed when the user application makes a request
to send a command to the service provider. The enable check determines whether the
command instance is enabled or disabled. If the command instance is disabled, then
the command is aborted. If instead the command instance is enabled, it remains in a
pending state until the ready check authorizes it being sent to its destination.

• Ready Check This check is performed on a pending command instance that has
passed its enable check. The ready check determines when the command instance is
sent to its destination. The command instance remains pending until the ready check
is passed. When the ready check is passed, the command instance may be sent to its
destination.

• Repeat Check This check is performed on a command instance after it has been sent
to its destination. The check returns either "repeat" or "no repeat". In the former
case, the command instance is updated and sent again to its destination. In the latter
case, it is terminated.

On the service provider side, the following conditional checks are de�ned for a command:

• Acceptance Check The acceptance check is performed when the command instance
is received by its destination. If the acceptance check is passed, then the command
remains pending and can be further processed by its recipient. If the acceptance check
is not passed, then the command instance is aborted.

• Ready Check This check is performed on a pending command instance that has
passed its acceptance check. The ready check determines when the execution of the
command starts. As long as the ready check is not passed, the command remains
pending. When the ready check is passed, the command instance attempts to start
execution.

c©2019 P&P Software GmbH. All Rights Reserved. 27

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

5.1.3 The Command Actions

Command actions are executable functionalities which encapsulate the actions to be per-
formed by the command. Command actions are executed depending on the outcome of
the command conditional checks. Command actions must have zero logical execution time.
This restriction allows them to be mapped to actions in state machines.

The following action is de�ned for a command on the service user side:

• Update Action Through this action, the command acquires the information which
it requires to execute its action on the service provider application. This action is
executed before the command is sent to its destination. If the command is sent more
than once (i.e. if its repeat check returns "repeat" one or more times), then the
Update Action is performed repeatedly every time the command must be sent to its
destination.

The following actions are de�ned for a command on the service provider side:

• Start Action The start action is executed after the start check has been passed. The
start action encapsulates one-o� initialization actions that must be performed at the
beginning of a command's execution. The start action has an outcome which is either
�success� or �failed�. If the outcome of the start action is �failed�, the command is
aborted.

• Progress Action Commands execute in one or more execution steps. The progress
action encapsulates the actions performed in one execution step. The progress action
is executed the �rst time after the start action has terminated and it is then executed
again until either it fails or it completes.
The progress action has two outcomes: a completion outcome which can be either
"completed" or "not completed" and a success outcome which can be either "success"
or "failed". If the completion outcome is "completed", then all execution steps have
been completed and the termination action is executed. If, instead, it is "not com-
pleted", then another execution step will be executed. The success outcome determines
the kind of acknowledge reports which are generated for the progress action.
Finally, the progress action updates the progress step identi�er. A "progress step" is
a set of logically related execution steps which are executed in sequence.

• Termination Action The termination action is executed after all the progress steps
have been successfully executed. The termination action encapsulates one-o� �naliza-
tion actions that must be performed before the command is terminated. The termi-
nation action has an outcome which is either �success� or �failed�. If the outcome of
the termination action is �failed�, the command is aborted.

• Abort Action If a command is aborted (i.e. if it fails its acceptance check, or its
start action faisl, or its progress action fails, or its termination action fails) then it
executes its abort action. The abort action thus encapsulates the �nalization actions
to be performed in case of a command failure.

5.1.4 Command Lifecycle

A command instance begins its life on the user side when the user application makes a
request for the command instance to be sent to the provider application. Nominally, on
the user side, the command can be in one single state PENDING. This corresponds to the
state of a command that has passed its enable check and is waiting for its ready check to
authorize the transfer of the command to the provider application.

c©2019 P&P Software GmbH. All Rights Reserved. 28

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

On the provider side, the command instance passes through four states: ACCEPTED,
STARTED, PROGRESS, and TERMINATED. The command states are entered in sequence
as the command is executed. The PROGRESS state can be entered more than once to
represent the fact that some commands execute actions which extend over time and which
are therefore broken into several steps.

To each command state one check and one action may be associated. The checks determine
whether a state can be entered or exited. For instance, if the acceptance check fails, then
the command cannot be executed. The actions encapsulate the activities to be performed
when the command enters a certain state. For instance, the start action de�nes the actions
to be executed when the command is started. Actions have an outcome which determines
the next step in the execution of the command.

On the provider side, a change in the state of a command is marked by the generation of
an Acknowledge Report. Acknowledge Reports are used to notify the sender of a command
of a change in the state of the command. Four kinds of Acknowledge Reports are de�ned
corresponding to the four states that a command may have in a provider application:

• Acceptance Acknowledge Report to notify the command sender of the outcome of the
acceptance check.

• Start Acknowledge Report to notify the command sender of the outcome of the start
action.

• Progress Acknowledge Report to notify the command sender of the outcome of a
progress step.

• Termination Acknowledge Report to notify the command sender of the outcome of the
termination action.

The sending of an acknowledge report to a command sender is done unconditionally in the
following cases: (a) the acceptance check has not been passed, (b) the start action has failed,
(c) the progress action has failed, or (d) the termination action has failed. Note that all
of these cases result in the command being aborted. Thus, the sending of an acknowledge
report is done unconditionally whenever a check or action results in a command being
aborted. For instance, if the start action of a command fails, a Start Acknowledge Report
is sent to the command sender to notify it that the command has failed to start execution
and has consequently been aborted.

In all other cases (namely when the acceptance check is passed, or the start action, or the
progress action, or the termination action are successful), the sending of the acknowledge
report to the command sender is conditional upon the value of the Acknowledge Level
attribute of the command (see section 5.1.1). Thus, for instance, the command sender
can set the Acknowledge Level attribute of a certain command such that only successful
acceptance and successful termination of the command are reported.

The Progress Acknowledge Report is only sent at the end of a progress step. A progress step
is deemed to have ended when the previous execution of the progress action has resulted in
the progress step identi�er being updated.

Figure 5.1 shows the nominal lifecycle of a command in an informal notation. In summary,
the CORDET Framework pre-de�nes the logic to handle the transitions between the com-
mand states. It does this by de�ning the logic to manage the execution of the command
checks and of the command actions but it leaves the de�nition of the content of the actions
and checks open.

c©2019 P&P Software GmbH. All Rights Reserved. 29

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

The lifecycle outlined above may be repeated more than once for the same command in-
stance. Repetition is determed by the outcome of the Repeat Check. The Repeat Check is
performed at the end of the lifecycle depicted in �gure 5.1. If it returns "no repeat", then
the command instance is destroyed. If instead, the check returns "repeat", then the content
of the command is updated and thze command is re-sent to its destination where it repeats
the lifecycle of �gure 5.1.

Fig. 5.1: Command Lifecycle (Informal Notation)

5.2 Report Concept

Each report belongs to a service. Within that service, the report is identi�ed by the sub-type
(a positive integer). Thus, a report is fully identi�ed by a pair [x,y] where 'x' is the identi�er
of the service to which the report belongs (the service type, see section 3.2) and 'y' is the
identi�er of the report within the service (the command sub-type).

Commands and reports within the same service have di�erent sub-types. Thus, it is not
possible for a command and a report to be identi�ed by the same [type, sub-type] pair.

Reports are types which are instantiated at run-time. A report is generated by a service
provider which sends it to a service user in order to provide it with information about its
internal state. Thus, a report instance begins its life when the application on the service
provider side (the provider application) decides that it wishes to send some information to
the application on the service user side (the user application).

On the service provider side, a report is con�gured with the information that it must carry
and then it is sent to its destination (a user application). The sending of the report to
the user application may be conditional on certain checks being passed. On the user side,
the report performs an update action. The report encapsulates the data to be sent, the
conditional checks which determine whether the report is sent, and the update action.

The same report instance may be sent to its destination more than once. This models the
situation where a service provider is issuing periodic reports to a service user. In this case,
the content of the report is updated every time it is sent to its destination.

Thus, a report is de�ned by its attributes, its conditional checks and an update action.

Attributes designate characteristics that are entirely de�ned by their value. The update
actions and conditional checks designate executable functionalities that are associated to
the report. The conditional checks determine whether a report is sent to its destination and
the update action determines what the report does with the data it carries in its destination.

The next three subsections further de�ne the report attributes, the report conditional checks
and the report update action. The last sub-section describes the lifecycle of a report.

c©2019 P&P Software GmbH. All Rights Reserved. 30

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

5.2.1 The Report Attributes

An attribute is a characteristics that is entirely de�ned by its value. A report has the
following attributes:

• Service Type Each report contributes to implementing a service. This attribute
identi�es the service that the report implements.

• Report Sub-Type Each service is implemented by several reports. This attribute
identi�es the type of the report within a certain service.

• Report Identi�er A report may exist in two distinct applications (the provider
application which sends the report and the user application which receives it). This
attribute uniquely identi�es the report instance within both applications and through-
out the life of both applications.

• Destination Reports are generated by a provider application for a user application.
This attribute identi�es the user application for which the report is intended.

• Source Reports are generated by a provider application for a user application. This
attribute identi�es the provider application which issues the report.

• Time Stamp The time when the provider application makes the request to send the
report to its destination.

• Group Reports sent by a provider application to the same destination are allocated
to a group. This attribute identi�es the group to which the report belongs. The
concept of group is primarily relevant to applications which aim at PUS-compliance
(see section 3.5).

• Sequence Counter Every time a provider application generates a report belonging
to a certain source group, it increments a counter. The sequence counter attribute
holds the value of this counter. The sequence counter can be used by the recipient
application to check whether any reports addressed to it have been lost.

• Report Parameters Some reports may require parameters to fully specify the ac-
tions and checks that they encapsulate. The �Report Parameters� attribute holds the
value of these parameters. This attribute consists of an ordered sequence of items of
primitive type.

• Discriminant The number and type of report parameters in a report instance is not
necessarily determined by the report type (i.e. di�erent instances of the same report
type may have di�erent sets of report parameters). The discriminant is a report
parameter which determines the number and type of the other report parameters.
Thus, the layout of a report instance is fully determined by the triplet: [x,y,z] where
'x' is the identi�er of the service to which the report belongs (the service type), 'y'
is the identi�er of the report within the service (the report sub-type), and 'z' is the
discriminant. The discriminant is an optional attribute. Report types which have no
parameters, or which have a �xed set of parameters, have no discriminant.

• CRC A report carries a checksum which is set by the report's sender and which the
recipient of the report can use to verify the integrity of the report's transmission.

5.2.2 The Report Conditional Checks

A conditional check is an executable functionality which returns an enumerated value. The
enumerated value reports the outcome of the check. Conditional checks are performed as
part of the processing of a report in a provider application. Their outcome determines
whether and when the report is sent to its destination.

c©2019 P&P Software GmbH. All Rights Reserved. 31

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

Conditional checks must have zero logical execution time. This restriction allows them to
be mapped to guards in state machines.

The following conditional checks are de�ned for a report on the service provider side:

• Enable Check This check is performed when the provider application makes a request
to send a report to the service user. The enable check determines whether the report
instance is enabled or disabled. If the report instance is disabled, then the report is
aborted. If instead the report instance is enabled, it remains in a pending state until
the ready check authorizes it being sent to its destination.

• Ready Check This check is performed on a pending report instance that has passed
its enable check. The ready check determines when the report instance is sent to its
destination. The report instance remains pending until the ready check is passed.
When the ready check is passed, the report instance may be sent to its destination.

• Repeat Check This check is performed on a report instance after it has been sent to
its destination. The check returns either "repeat" or "no repeat". In the former case,
the report instance is updated and sent again to its destination. In the latter case, it
is destroyed.

On the service user side, the following conditional checks are de�ned for a report:

• Acceptance Check The acceptance check is performed when the report instance is
received by its destination. If the acceptance check is passed, then the report's update
action is executed. If the acceptance check is not passed, then the report instance is
aborted.

It should be noted that the conditional checks de�ned for a report on the provider side have
a similar semantics as the conditional checks de�ned for a command on the service user side
(see section 5.1.2). This similarity re�ects the fact that out-going commands are handled in
the same way as out-going reports.

5.2.3 The Report Actions

Report actions are executable functionalities which encapsulate the actions to be performed
by the command. Report actions are executed depending on the outcome of the report
conditional checks. Report actions must have zero logical execution time. This restriction
allows them to be mapped to actions in state machines.

The following action is de�ned for a report on the service provider side:

• Update Action Through this action, the report acquires the information which it
must carry to its destination. This action is executed before the report is sent to
its destination. If the report is sent more than once (i.e. if its repeat check returns
"repeat" one or more times), then the Update Action is performed repeatedly every
time the report must be sent to its destination.

The following action is de�ned for a report on the service user side:

• Update Action This action is executed on the user side after a report has been
received by a user application and has passed its acceptance check. A report carries
data to a user application. The Update Action determines what the report does with
these data on the user application.

c©2019 P&P Software GmbH. All Rights Reserved. 32

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

As in the case of the report conditional checks, it should be noted that the action de�ned for
a report on the provider side have a similar semantics as the action de�ned for a command
on the service user side (see section 5.1.3). This similarity re�ects the fact that out-going
commands are handled in the same way as out-going reports.

5.2.4 Report Lifecycle

A report instance begins its life on the service provider side when the provider application
creates and con�gures the report instance and requests it to be sent to the user application.
Through the report con�guration process, the provider application de�nes the data that the
report must carry to its destination.

Nominally, on the provider side, the report can be in one single state PENDING. This
corresponds to the state of a report that has passed its enable check and is waiting for its
ready check to authorize the transfer of the report to the user application.

On the user side, the report executes its acceptance check. Tyically, this check encapsulates
syntactical checks which verify the integrity of the data carried by the report. If the check
is passed, then the report's update action is executed. Typically, the update action might
consist in updating the value of selected variables in the user application to re�ect the arrival
of the report, or it might consist in storing a copy of the data carried by the report into a
repository. If the acceptance check is not passed, the report is simply dicarded.

The CORDET Framework de�nes the logic to manage the report lifecycle but it leaves the
de�nition of the content of the report and of its conditional checks open.

Figure 5.2 shows the nominal lifecycle of a report in an informal notation. In summary,
the CORDET Framework pre-de�nes the logic to handle the transitions between the report
states. It does this by de�ning the logic to manage the execution of the report checks and of
the report actions but it leaves the de�nition of the content of the actions and checks open.

The lifecycle outlined above may be repeated more than once for the same report instance.
Repetition is determed by the outcome of the repeat check. The repeat check is performed
at the end of the lifecycle depicted in �gure 5.1. If the check returns "no repeat", then the
report instance is destroyed. If instead, it returns "repeat", then the content of the report
instance is updated and re-sent to its destination where it repeats the lifecycle of �gure 5.2.

Fig. 5.2: Report Lifecycle (Informal Notation)

c©2019 P&P Software GmbH. All Rights Reserved. 33

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

6 Packet Interface

CORDET applications interact with each other by exchanging commands and reports.
Within an application, commands and reports are encapsulated in components but, when
they travel from one application to another (over some communication channel which is
provided by some middleware external to the applications themselves), they take the form
of packets (see section 3.6). A report or command packet is an ordered sequence of bytes
that contains all the information required to reconstruct a report or command.

Thus, the interface between two CORDET applications is packet-based. More precisely, an
application needs an out-going interface through which it can send to another application
a packet representing a command or a report and it needs an incoming interface through
which it can receive from other applications packets representing commands or reports.

The CORDET Framework assumes that a middleware is present which o�ers physical con-
nections through which two applications can send packets to each other. A physical connec-
tion then is a data channel provided by a middleware and capable of transporting packets
from one application to another application.

A CORDET system (namely a set of CORDET applications connected to each other by a
middleware) builds a set of logical connections on top of the physical connections o�ered by
the middleware. A logical connection allows two applications A1 and A2 to exchange packets
either directly through a physical connection linking A1 to A2 (in which case the logical
connection coincides with a physical connection) or through a chain of other applications
which are linked to each other and to A1 and A2 by physical connections. This is illustrated
in �gure 6.1. The �gure shows a CORDET system consisting of four applications (yellow
boxes in the �gure). The applications are linked to each other by three physical connections
(black lines in the �gure). In this system, the following kinds of logical connections might,
for instance, be de�ned:

1. A logical connection between applications A and B which is built upon physical con-
nection C1;

2. A logical connection between applications B and D which is built upon physical con-
nection C3;

3. A logical connection between applications A and C which is built upon physical con-
nections C1 and C2 and application B acting as re-routing node.

When a packet travels through an application en route to another application, it is said to
be re-routed. Packet re-routing is a function which is de�ned by the CORDET Framework
and is therefore supported by default by CORDET Systems. In �gure 6.1 a packet travelling
along a logical connection from application A to application C is re-routed by application
B.

This section speci�es the interfaces through which applications send packets to and receive
them from the middleware and it speci�es the re-routing logic which allows applications to
exchange packets even in the absence of a direct physical connection linking them.

6.1 Middleware Assumptions

Although, the CORDET Framework does not specify the middleware through which ap-
plications may exchange packets with each other, it assumes this middleware to satisfy
certain, very generic, assumptions. The next two sub-sections de�ne the assumptions made

c©2019 P&P Software GmbH. All Rights Reserved. 34

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

Fig. 6.1: Physical And Logical Connections

by the CORDET Framework on, respectively, out-going interfaces (interfaces through which
packets are sent to another application over a physical connection) and incoming interfaces
(interfaces through which packets are received from other applications over a physical con-
nection).

6.1.1 Out-Going Interface

An out-going interface is an interface through which an application sends packets to another
application over a physical connection provided by a middleware. The following assumptions
are made by the CORDET Framework about out-going connections:

A1 A connection may be in one of two states: AVAIL or NOT_AVAIL.

A2 If a connection is in state AVAIL, then it is capable of accepting at least one entire
packet for eventual transfer to its destination.

A3 A connection o�ers a non-blocking Send operation through which an application can
make a request for a packet to be sent to its destination.

A4 The Send operation either forwards a packet to its destination (if the middleware is
in state AVAIL when the Send request is made) or else it does nothing but notify the
caller that the packet cannot be forwarded (if the middleware is in state NOT_AVAIL
when the Send request is made).

A5 A connection may make a transition between the AVAIL and NOT_AVAIL states at
any time.

A6 A connection may be queried for its current state.

These assumptions correspond to a middleware which accepts packets one at a time and
which implements a potentially complex protocol to deliver them to their destination. This
protocol may include bu�ering of packets (to bridge periods of non-availability of the phys-
ical link), splitting of packets into smaller messages (to accommodate restrictions on the
maximum length of a transmission message), and re-sending of packets which have not been
successfully delivered (to ensure continuity of service).

These protocol complexities manifest themselves at the application level exclusively as tran-
sitions between states AVAIL and NOT_AVAIL (e.g. the middleware connection becomes
unavailable when the middleware bu�er is full, or when a packet has to be broken up into
messages which have to be sent separately, or when a packet has to be re-sent). Thus, the
application is shielded from protocol-level complexity and is only required to be able to
handle periods of non-availability of the middleware connection.

c©2019 P&P Software GmbH. All Rights Reserved. 35

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

Note also that there is no assumption that the middleware be able to signal a change of state
of a connection from NOT_AVAIL to AVAIL. Such a capability could be exploited by an
application but is not mandated by the CORDET Framework. Thus, applications are com-
patible both with a �polling architecture� where the middleware connection is periodically
queried for its availability status and with a �call-back architecture� where the application
waits to be noti�ed of the middleware's availability.

6.1.2 Incoming Interface

An incoming interface is an interface through which an application receives packets from
another application over a physical connection provided by a middleware. The following
assumptions are made by the CORDET Framework about incoming connections:

B1 A connection may be in one of two states: WAITING or PCKT_AVAIL.

B2 If a connection is in state PCKT_AVAIL, then there is at least one packet that is
ready to be collected by the application.

B3 A connection o�ers an operation through which a packet that is waiting to be collected
can be collected.

B4 A connection may make a transition from state PCKT_AVAIL to WAITING exclu-
sively as a result of the call to the operation to collect a packet.

B5 A connection may make a transition from state WAITING to PCKT_AVAIL at any
time.

B6 A connection may be queried for its current state.

These assumptions correspond to a middleware which implements a potentially complex
protocol for processing incoming packets. This protocol may include: the defragmentation
of packets which are transferred in several messages; the multiplexing of channels from
several packet sources; the generation of low-level acknowledgements for incoming packets;
the bu�ering of incoming packets.

These protocol complexities manifest themselves at the application level exclusively as tran-
sitions between state PCKT_AVAIL and WAITING (e.g. the middleware connection is in
state WAITING when no packet has arrived, or when messages are being spliced together
to compose a complete packet, or when an acknowledgement is being generated). Thus,
the application is shielded from protocol-level complexity and is only required to be able to
handle periods when no incoming packet is present.

Note also that there is no assumption that the middleware be able to signal a change of
state of a connection from WAITING to PCKT_AVAIL. Such a capability, if it exists,
can be exploited by an application but is not mandated by the CORDET Framework.
Thus, an application is compatible both with a �polling architecture� where the middleware
connection is periodically queried for the presence of incoming packets and with a �call-back
architecture� where the application waits to be noti�ed of the arrival of a packet.

6.2 Packet Interface Concept and Speci�cation

The packet interface concept for CORDET applications is illustrated in �gure 6.2 using an
information notation.

The management of the out-going packet interface is performed by one or more OutStream
components. An OutStream component encapsulates an out-going interface through which

c©2019 P&P Software GmbH. All Rights Reserved. 36

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

packets are sent to a certain destination. An application has one OutStream component for
each destination to which it may send packets.

The management of the incoming packet interface is performed by an InStream component.
An InStream component encapsulates the incoming interface through which an application
receives packets from a certain packet source. An application has one InStream component
for each source from which it may receive packets.

Packets which are received by an InStream in application A and which have application A
as their destination are made available to the internal components of application A. Packets
which are received by an InStream in application A and which have an application other
than A as their destination are instead re-routed. This means that they are handed over to
an OutStream for forwarding to another application (either their �nal destination or another
intermediate application on the way to their �nal destination).

As an example, consider again the CORDET System of �gure 6.1 and consider �rst the
case of a packet which is sent by application A to application B over connection C1. This
packet is placed on connection C1 by an OutStream in application A and is received by an
InStream in application B. Since the destination of the packet is application B itself, the
InStream makes the packet available to the internal components of application B.

Consider next the case of a packet which is sent by application A to application C and which
must therefore be re-routed by application B. This packet is initially placed on connection
C1 by an OutStream in application A and is received by an InStream in application B.
This InStream recognizes that the packet destination is not B and therefore re-routes it by
directly handing it over to an OutStream which places it on connection C2. At the other end
of this connection, the packet is received by an InStream in application C which recognizes
that the packet has arrived at its �nal destination and therefore makes it available to the
internal components of application C.

Fig. 6.2: Packet Interface Concept

6.2.1 The OutStream Component

This component models the out-going interface through which packets representing either
commands (in a service user application) or reports (in a service provider application) are
sent to their destination. The OutStream is therefore located at the interface between an

c©2019 P&P Software GmbH. All Rights Reserved. 37

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

application and the middleware layer.

An application A may send packets to several destinations. The packets may either originate
within application A itself or they may have originated in some other application (the latter
is the case if application A is re-routing the packets). Depending on the characteristics
of the middleware, only one OutStream component may be present in application A with
the multiplexing of the out-going connections to the packet destinations being done in the
middleware, or several OutStream components may be present each handling packets to a
subset of destinations. If an application is sending internally generated packets to a certain
destination D and is also re-routing packets to the same destination D, then it must use the
same OutStream for both kinds of packets.

The OutStreams are responsible for assigning the sequence counter attributes of out-going
packets generated by an application. Since sequence counters are incremented according
to a packet's group, all packets belonging to the same group must go through the same
OutStream.

The OutStream component extends the Base Component of section 4.2 and it therefore
inherits the initialization and con�guration logic de�ned by the Base Component. In the
initialization and con�guration process, the OutStream is linked to the middleware. This
process is necessarily application-speci�c (because the middleware is not speci�ed by the
CORDET Framework). However, the CORDET Framework speci�es that an OutStream
component may only become con�gured (i.e. it may enter state CONFIGURED) after the
middleware connection has become available (it has entered state AVAIL). This ensures that
an OutStream only becomes con�gured after its middleware connection has terminated its
own initialization and con�guration process.

Fig. 6.3: The OutStream State Machine

In state CONFIGURED, the behaviour of an OutStream is described by the state machine
of �gure 6.3 (the OutStream State Machine). The state machine has two states: READY
and BUFFERING. State READY represents a situation where the connection is expected to
be available and the OutStream hands over packets to the middleware. State BUFFERING
represents a situation where the connection may be unavailable and where packets are
bu�ered without being handed over to the middleware.

c©2019 P&P Software GmbH. All Rights Reserved. 38

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

The OutStream State Machine reacts to two commands: Send and ConnectionAvailable.
Command Send is issued by the host application when it wishes to send a packet to its des-
tination. If, at the time a Send request is made, the state machine is in state BUFFERING,
then the packet is enqueued in the Packet Queue.

The Packet Queue is an internal data structure where packets which are waiting to be sent
are stored. The size of the packet queue is �xed and is de�ned as part of the OutStream
con�guration. Attempts to enqueue a packet in a full queue are reported as errors.

The Packet Queue is a FIFO queue. This guarantees that the OutStream component de-
livers packets to the middleware in the same order in which it receives them from its host
application.

If, instead, a Send request is made at a time when the OutStream is in state READY,
then an attempt is made to hand over the packet to the middleware. If this succeeds, the
OutStream remains in state READY. If instead the hand-over to the middleware fails, the
packet is enqueued and the OutStream makes a transition to state BUFFERING. Note that
the logic of the OutStream State Machine guarantees that, at entry into state READY, the
packet queue is empty.

The Send command may either fail or succeed. If it results in its packet being enqueued on
the Packet Queue, then the Send command succeeds (note that property P3 below ensures
that a packet which has been enqueued will eventually be handed over to the middleware).
If instead it results in its packet being lost because, at the time the Send command was
called, the Packet Queue was full, then the Send command fails.

Command ConnectionAvailable would typically be generated by the middleware when the
connection (or one of the connections) associated to the OutStream changes from NOT_-
AVAIL to AVAIL. This command is used to trigger the �ushing of the Packet Queue. When
the OutStream receives command ConnectionAvailable it empties the Packet Queue one
packet at a time until the queue is empty or the connection becomes unavailable.

The out-going packets which are handled by an OutStream may have two origins: (a) they
may have originated in the same application to which the OutStream belongs, or (b) they
may be re-routed packets which originate from some other application and which are using
the OutStream's application as a gateway on the way to their destination (see �gure 6.2).
In case (a), the OutStream is responsible for setting the sequence counter attribute of the
out-going packet. In case (b), by contrast, the packet's sequence counter attribute is already
set (it has been set by the application where the packet originated).

In case (a), the sequence counter is incremented according to the group to which an out-
going command or report belongs. Thus, an OutStream maintains an array of sequence
counters, one for each group to which its out-going commands or reports may belong. The
i-th element of this array holds the value of sequence counter which will be assigned by the
OutStream to the next out-going command or report belonging to the i-th group managed
by the OutStream. The sequence counters are initialized to 1 when the OutStream is reset
(i.e. the �rst value of sequence counter assigned to an out-going command or report after
the OutStream is reset is 1). If a command or report has an illegal group attribute, this is
reported as an error.

The OutStream is responsible for computing and setting the CRC of an out-going packet.
This can only be done after the sequence counter has been set (because the sequence counter
itself contributes to the value of the CRC).

c©2019 P&P Software GmbH. All Rights Reserved. 39

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

The logic of the OutStream State Machine together with the assumptions made in section
6.1.1 about out-going middleware connections guarantee the following properties:

P1 Packets are sent out in the order in which they are received.

P2 No packet is ever lost by an OutStream.

P3 There cannot be a permanent backlog of unsent packets.

P4 An OutStream never deadlocks.

Properties P1 and P2 are implicit to the OutStream logic. Property P1 is guaranteed
because only the oldest packet from the Packet Queue is ever handed over to the middleware.
Property P2 is guaranteed because a packet can only be lost if it is handed over to the
middleware and the middleware fails to deliver. However, in this case, the packet remains
enqueued and will be sent again.

Properties P3 and P4 are veri�ed on the Promela model of the OutStream presented in
appendix A.

Table 6.1: Adaptation Points for OutStream Component

AP ID Adaptation Point Default Value

OST-1 Packet Queue Size for Out-
Stream

No value de�ned at framework level

OST-2 Initialization Check in Ini-
tialization Procedure of Out-
Stream

Returns 'check successful' if the size of the
Packet Queue has been set to a positive inte-
ger

OST-3 Initialization Action in Ini-
tialization Procedure of Out-
Stream

Allocate resources for Packet Queue and re-
turn 'Action Successful' i� the allocation suc-
ceeds

OST-4 Con�guration Check in Ini-
tialization Procedure of Out-
Stream

Same value as in Base Component

OST-5 Con�guration Action in Reset
Procedure of OutStream

Reset the Packet Queue and return 'Action
Successful'

OST-6 Shutdown Action of Out-
Stream

Reset the Packet Queue

OST-7 Execution Procedure of Out-
Stream (closes BAS-6)

Same value as in Base Component

OST-8 Packet Hand-Over Operation
of OutStream

No value de�ned at framework level

OST-9 Operation to set Sequence
Counter in Outgoing Packets

No value de�ned at framework level

OST-12 Operation to Report Packet
Queue Full

Generate OUTSTREAM_PQ_FULL Error
Report

OST-13 Operation to Compute and Set
a Packet's CRC

Set CRC to 0xFFFF

c©2019 P&P Software GmbH. All Rights Reserved. 40

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

Table 6.2: Requirements Applicable to OutStream Component

Req. ID Requirement Text

P-OST-1/S The CORDET Framework shall provide an OutStream component as an ex-
tension of the Base Component.

P-OST-2/S The behaviour of the OutStream component in state CONFIGURED shall be
as de�ned by the OutStream State Machine of �gure 6.3.

P-OST-3/P The OutStream shall guarantee the OutStream Properties P1 to P4.

P-OST-4/S The Packet Queue in the OutStream shall be managed as a FIFO queue.

P-OST-5/A The OutStream component shall support the adaptation points OST-*.

P-OST-6/S The OutStream shall provide visibility over the state of its Packet Queue (num-
ber of packets in the queue and number of empty slots still available).

P-OST-7/C The OutStream shall be used with a middleware which satis�es the Middleware
Assumptions A1 to A5.

P-OST-8/C An application shall instantiate one OutStream for each destination (either a
destination for internally generated packets or for re-routed packets) to which
packets may be sent.

P-OST-9/C If an application sends internally generated packets to a certain destination
D and also re-routes packets to the same destination D, then it shall use the
same OutStream for both kinds of packets.

P-OST-10/C All out-going commands and reports originating from an application and be-
longing to the same group shall be routed through the same OutStream

P-OST-11/C An OutStream shall only enter state CONFIGURED when its middleware
connection has become AVAILABLE.

6.2.2 The InStream Component

The InStream component models the interface through which packets representing incoming
commands or reports are received by an application. The InStream component is therefore
located at the interface between an application and the middleware layer (see section 3.6).

An application A may receive packets from several sources. The packets may either have
application A as their destination or they may be intended for some other application.
In the latter case, application A is responsible for re-routing the packets. Depending on
the characteristics of the middleware, only one InStream component may be present in
application A with the multiplexing of the incoming connections from the packet sources
being done in the middleware, or several InStream components may be present each handling
packets from a subset of incoming connections.

Although several connections may be managed by the same InStream, a connection can only
send its packet to one InStream (i.e. a situation where the same connection is controlled
by several InStreams and several InStreams are therefore handling packets from the same
source is not allowed).

The InStreams are responsible for checking the sequence counter attributes of incoming
packets received by an application. Since sequence counters are incremented according to
a packet's group, all packets belonging to the same group must arrive through the same
InStream.

The InStream component is de�ned as an extension of the Base Component of section
4.2 and it therefore inherits the initialization and con�guration logic de�ned by the Base

c©2019 P&P Software GmbH. All Rights Reserved. 41

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

Component. In the initialization and con�guration process, the InStream is linked to the
middleware. This process is therefore necessarily application-speci�c (because the middle-
ware is not speci�ed by the CORDET Framework). However, the CORDET Framework
speci�es that an InStream component may only become con�gured (i.e. it may enter state
CONFIGURED) after the middleware connection has terminated its own initialization and
con�guration. This ensures that an InStream only becomes con�gured after its middleware
connection has terminated its own initialization and con�guration process.

Fig. 6.4: The InStream State Machine

In state CONFIGURED, the behaviour of an InStream is described by the state machine
of �gure 6.4 (the InStream State Machine). The state machine has two states: WAITING
and PCKT_AVAIL. State WAITING represents a situation where no incoming packets are
waiting to be collected by the host application. State PCKT_AVAIL represents a situation
where at least one incoming packet has been collected from the middleware and is now
waiting to be collected by the host application.

The InStream component stores packets it has collected from the middleware in the Packet
Queue. The Packet Queue is an internal InStream data structure where packets which have
been collected from the middleware are stored and where they remain available until the
application retrieves them. The size of the packet queue is �xed and is de�ned as part of
the InStream con�guration. Attempts to enqueue a packet in a full queue are reported as
errors.

The Packet Queue is a FIFO queue. This guarantees that the InStream component deliv-
ers packets to its host application in the same order in which it has collected them from
the middleware. The InStream State Machine reacts to two commands: GetPacket and
PacketAvailable. Command GetPacket is issued by the host application when it wishes
to collect an incoming packet. If the command is received when the state machine is in state
PCKT_AVAIL (namely when at least one packet is available in the Packet Queue), then
the command results in the oldest packet in the Packet Queue being returned to the caller.
If the packet thus returned is the last on the queue, the command triggers a transition to
state WAITING.

If the GetPacket command is received when the state machine is in state WAITING, the
command has no e�ect and returns nothing.

Command PacketAvailable would typically be issued under two conditions: (a) in response
to the middleware connection changing from NOT_AVAIL to AVAIL, or (b) periodically to
check whether any packets are available at the middleware interface. Case (a) corresponds

c©2019 P&P Software GmbH. All Rights Reserved. 42

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

Fig. 6.5: The Packet Collect Procedure

to a call-back architecture where the middleware alerts the application that a new packet has
arrived. Case (b) corresponds to a polling architecture where the application periodically
checks whether a new packet has arrived.

Reception of command PacketAvailable causes the Packet Collect Procedure of �gure 6.5
to be run. This procedure collects all packets currently available at the middleware. The
packets are stored in the InStream's Packet Queue.

Also as part of the processing of the PacketAvailable command, the Packet Collect Pro-
cedure checks the sequence counter attribute of incoming packets which have the host ap-
plication as their destination. To each InStream, a set of groups are associated. For each
group, the InStream maintains a sequence counter. When a packet is received which belongs
to that group, the InStream checks that its sequence counter has incremented by one with
respect to the previous packet in the same group. If the procedure �nds that the sequence
counter has not incremented by one, it reports the sequence counter error. An error is also
reported if the group attribute of an incoming packet does not correspond to one of the
groups managed by the InStream.

The sequence counter check is only done for packets which have the host application as their
destinations. Packets which are in transit (i.e. packets which must be re-routed to some
other application) do not undergo any check on their sequence counter. This logic ensures
that the sequence counter check is only performed once by the InStream that receives a
packet in the destination application of that packet.

c©2019 P&P Software GmbH. All Rights Reserved. 43

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

Table 6.3: Adaptation Points for InStream Component

AP ID Adaptation Point Default Value

IST-1 Size of the Packet Queue in In-
Stream

Default size is 1

IST-2 Initialization Check in Initial-
ization Procedure of InStream

Returns 'check successful' if the size of the
Packet Queue has been set to a positive inte-
ger

IST-3 Initialization Action in Initial-
ization Procedure of InStream

Allocate resources for Packet Queue and re-
turn 'Action Successful' i� the allocation suc-
ceeds

IST-4 Con�guration Action in Reset
Procedure of InStream

Reset the Packet Queue and return 'Action
Successful'

IST-5 Shutdown Action of InStream Reset the Packet Queue

IST-6 Execution Procedure of In-
Stream (closes BAS-6)

Same value as in Base Component

IST-7 Operation to Get Packet
Source from Incoming Packet

No value de�ned at framework level

IST-8 Operation to Get Packet Se-
quence Counter from Incoming
Packet

No value de�ned at framework level

IST-9 Operation to Report Sequence
Counter Error

Generate INSTREAM_SC_ERR Error Re-
port with expected and actual sequence
counter values

IST-10 Operation to Report Packet
Queue Full

Generate INSTREAM_PQ_FULL Error Re-
port

IST-11 Packet Collect Operation for
InStream

No default de�ned at framework level

IST-12 Packet Available Check Opera-
tion for InStream

No default de�ned at framework level

c©2019 P&P Software GmbH. All Rights Reserved. 44

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

Table 6.4: Requirements Applicable to InStream Component

Req. ID Requirement Text

P-IST-1/S The CORDET Framework shall provide an InStream component as an exten-
sion of the Base Component.

P-IST-2/S The behaviour of the InStream component in state CONFIGURED shall be as
de�ned by the InStream State Machine of �gure 6.4 and by the Packet Collect
Procedure of �gure 6.5.

P-IST-3/S The Packet Queue in the InStream shall be managed as a FIFO queue.

P-IST-4/A The InStream component shall support the adaptation points IST-*.

P-IST-5/S The InStream shall provide visibility over the state of its Packet Queue (num-
ber of packets in the queue and number of empty slots still available).

P-IST-6/C The InStream shall be used with a middleware which satis�es the Middleware
Assumptions B1 to B5.

P-IST-7/C A packet source shall be attached to only one InStream component.

P-IST-8/C All incoming commands and reports with application A as their �nal des-
tination and belonging to the same group shall be routed through the same
InStream

P-IST-9/C An InStream shall only enter state CONFIGURED when its middleware con-
nection has terminated its initialization and is either in state WAITING or
PCKT_AVAIL.

6.2.3 The OutStreamRegistry Component

As discussed in section 6.2.1, for each command or report destination, one OutStream
component must be instantiated by an application. The CORDET Framework accordingly
de�nes an OutStreamRegistry component which encapsulates the link between the command
and report destinations and the associated OutStream.

Only one operation is de�ned at framework level for the OutStreamRegistry. The OutStreamGet
operation lets a user retrieve the OutStream corresponding to a certain command or report
destination. The command or report destination is identi�ed by the value of the destination
attribute of the command or report (see sections 5.1.1 and 5.2.1).

If an invalid destination is provided to the OutStreamGet operation, nothing is returned by
the operation itself but this is not treated as an error by the OutStreamRegistry component.
If the use of an invalid destination represents an error, this must be handled by the user of
the OutStreamRegistry.

Since the range of potential command and report destinations is unknown at framework
level, the OutStreamGet operation is an adaptation point for the OutStreamRegistry. The
link between the command and report destinations and their OutStreams is a con�guration
parameter for the OutStreamRegistry.

Only one instance of the OutStreamRegistry should exist in an application.

The OutStreamRegistry is de�ned as an extension of the Base Component.

c©2019 P&P Software GmbH. All Rights Reserved. 45

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

Table 6.5: Adaptation Points for OutStreamRegistry Component

AP ID Adaptation Point Default Value

OSR-1 Initialization Check in Ini-
tialization Procedure of Out-
StreamRegistry

Same value as in Base Component

OSR-2 Initialization Action in Ini-
tialization Procedure of Out-
StreamRegistry

Same value as in Base Component

OSR-3 Con�guration Check in Reset
Procedure of OutStreamReg-
istry

Returns 'check successful' if the information
to set up the link between the packet desti-
nations and the OutStreams is available.

OSR-4 Con�guration Action in Reset
Procedure of OutStreamReg-
istry

Set up and con�gure the link between the
packet destinations and the OutStreams.

OSR-5 Shutdown Action of Out-
StreamRegistry (closes BAS-5)

Same value as in Base Component

OSR-6 Execution Procedure of Out-
StreamRegistry (closes BAS-6)

Same value as in Base Component

OSR-7 Get OutStream Operation of
OutStreamRegistry

No default provided at framework level

Table 6.6: Requirements Applicable to OutStreamRegistry Component

Req. ID Requirement Text

P-OSR-1/S The CORDET Framework shall provide an OutStreamRegistry component as
an extension of the Base Component.

P-OSR-2/A TheOutStreamRegistry Component shall support the adaptation points OSR-*.

P-OSR-3/S The OutStreamRegistry component shall de�ne an API o�ering one operation:
OutStreamGet.

P-OSR-4/S The OutStreamGet operation shall either fail and return nothing, or succeed
and return the OutStream component associated to the command or report
destination speci�ed in its argument.

P-OSR-5/S The encoding of the command or report destination passed in a call the
OutStreamGet operation shall be the same as the encoding of the destination
attribute of commands and reports.

P-OSR-6/C An application shall instantiate the OutStreamRegistry component only once.

c©2019 P&P Software GmbH. All Rights Reserved. 46

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

7 Command And Report Management

This section speci�es the requirements applicable to the management of service commands
and service reports. The speci�cation is based on the command and report concept described
in section 5.

The present section covers the management of abstract commands and reports. The require-
ments de�ned in this section are therefore applicable to any command or report, irrespective
of the speci�c service to which they belong, or of the speci�c activities which a command
triggers, or of the speci�c data which a report carries. Concrete commands and reports are
de�ned in later parts of this document where the CORDET standard services are de�ned.
These concrete commands and reports are de�ned as specializations of the generic command
and report components de�ned in the present section.

The management of out-going commands and out-going reports is speci�ed in sub-section
7.1. The management of incoming commands and reports is speci�ed in sub-section 7.2.
Throughout this section, the term �component� is used to designate a component whose
behaviour extends the behaviour of the Base State Machine of section 4.2.

7.1 Management of Out-Going Commands and Reports

Out-going commands are commands in a user application (namely in an application which
sends commands to a service provider) and out-going reports are reports in a provider
application (namely in an application which sends reports to a service user).

Out-going commands and out-going reports are treated together because their management
is performed in the same way and is based on the following components:

• OutComponent This component models the generic behaviour of an out-going com-
mand or report. Concrete commands or report generated by an application are de�ned
as extensions of the base OutComponent component.

• OutFactory This is a component factory (in the sense of section 4.1) which pro-
vides uncon�gured instances of OutComponents to encapsulate out-going commands
or reports.

• OutLoader After an application has con�gured an OutComponent representing an
out-going command or report, it loads it into the OutLoader. This component is re-
sponsible for selecting the appropriate OutManager to process the out-going command
or report.

• OutManager This component is responsible for controlling an out-going command or
report until the OutComponent which encapsulates it is serialized to the OutStream
and sent to its destination as a packet.

• OutStream This component models the interface through which out-going commands
and reports are sent to their destination.

• OutRegistry This component acts as a registry for pending OutComponents. It
provides information about the state of the OutComponent to other parts of the host
applications.

Note that the OutFactory, OutLoader, and OutRegistry components are singletons and it is
therefore assumed that only one instance of each exists in an application. It is also assumed
that there is one (and only one) OutStream for each destination to which commands may
be sent (see usage constraints at the end of section 6.2.1).

c©2019 P&P Software GmbH. All Rights Reserved. 47

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

Fig. 7.1: Management of Out-Going Commands and Reports

The lifecycle of an out-going report or command is shown in �gure 7.1 using and informal
notation and can be summarized as follows:

1. When the host application decides that it must issue a command or a report, it asks the
OutFactory for an uncon�gured OutComponent instance to encapsulate the out-going
command or report.

2. The application con�gures the OutComponent and then loads it in the OutLoader.

3. The OutLoader selects an OutManager and loads the OutComponent into it. The
selection of the OutManager will often be based on the urgency with which the com-
mand or report must be issued (e.g. each OutManager component is characterized by
a certain priority level).

4. The OutManager component processes the out-going command or report. If the com-
mand or report is disabled, it is aborted and the component which encapsulated it
is returned to its factory (where it is either destroyed or is reused). If instead the
command or report is enabled, it remains pending in the OutManager until its ready
check indicates that the conditions are in place for it to be issued.

5. The report or command is issued by serializing its OutComponent to a packet which
is then handed over to the OutStream. The OutStream is responsible for sending the
packet to its destination.

6. After the OutComponent has been serialized and sent to its destination, the Out-
Manager evaluares the outcome of its Repeat Check. If this is equal to "repeat", the
content of the OutComponent is updated and the OutComponent is then processed
again as per point 4 above. If instead the repeat check had returned "no repeat",
processing of the OutComponent terminates and the OutComponent is returned to
its factory.

The following sub-sections specify each component type involved in the management of out-
going commands and reports with the exception of the OutStream component which was
speci�ed in section 6.2.1.

c©2019 P&P Software GmbH. All Rights Reserved. 48

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

7.1.1 The OutComponent Component

The OutComponent component encapsulates an out-going command or an out-going report.
This component enforces the generic behaviour that is common to all out-going commands
and reports irrespective of their type and it provides access to their attributes.

The OutComponent component � like all other CORDET Framework components � is an
extension of the Base Component of section 4.2. Behaviour which is speci�c to the OutCom-
ponent component is de�ned by the state machine shown in �gure 7.2 (the OutComponent
State Machine). This state machine is embedded within the CONFIGURED state of the
Base State Machine.

Fig. 7.2: The OutComponent State Machine

When the OutComponent is retrieved from its factory, it is initialized and reset (depending
on the implementation, the Reset command may be issued either by the factory itself
or by the user application). After the OutComponent has been successfully reset, the
OutComponent State Machine is in state LOADED. The component then waits for the
Execute and Terminate commands which are sent to it by its OutManager (see section
7.1.4).

The OutComponent behaviour depends on the outcome of three checks. The Enable Check
veri�es whether the command or report it encapsulates is enabled or not. If it is enabled,
the check sets �ag isEnabled to true; if it is disabled, it sets �ag isEnabled to false. The
Ready Check veri�es whether the command or report is ready to be sent to its destination.
If it is ready to be sent, the check sets �ag isReady to true; otherwise it sets the �ag to
false. The Repeat Check veri�es whether the command or report should remain pending
after being sent to its destination. If the outcome of the Repeat Check is 'Repeat' (i.e. if
the OutComponent should be sent to its destination again), �ag isRepeat is set to true;
if the outcome is 'No Repeat' (i.e. if the OutComponent should not bet sent again to its
destination), �ag isRepeat is set to false. The three check operations are adaptation points.

At each execution, the OutComponent performs the Enable Check and if this declares the
OutComponent to be disabled, it makes a transition to state ABORTED. This marks the
end of the OutComponent's lifecycle.

At each execution, the OutComponent has a chance to be sent to its destination. This is
done when the OutComponent is declared to be both ready and enabled by its Ready Check
and Enable Check.

c©2019 P&P Software GmbH. All Rights Reserved. 49

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

The sending operation is performed by the Send Packet Procedure of �gure 7.3. The Send
Packet Procedure starts by performing the Update Action. Through this action, the Out-
Component acquires the information it must transfer to its destination. By default, this
action sets the time stamp attribute of the OutComponent. Applications may want to ex-
tend this action to load the values of the OutComponent parameters. For this reason, the
Update Action is an adaptation point of the OutComponent.

The Send Packet Procedure then retrieves the destination of the OutComponent and then
interrogates the OutStreamRegistry to obtain the corresponding OutStream (recall that,
in an application, there is one instance of OutStream for each command or report desti-
nation). If an OutStream can be found (i.e. if the OutComponent's destination is valid),
the procedure serializes the OutComponent to generate a packet which is then handed over
to the OutStream. This ensures that the command or report will eventually be sent to its
destination. The serialization process is an adaptation point.

After serializing and handing over the OutComponent to its OutStream, the Send Packet
Procedure performs the Repeat Check. This determines whether the OutComponent should
be sent to its destination once more (the Repeat Check sets �ag isRepeat to true) or whether
its life is terminated (the Repeat Check sets �ag isRepeat to true). In the latter case, the
OutComponent will make a transition to TERMINATED.

If the OutStreamRegistry does not return any OutStream, then the procedure concludes
that the OutComponent's destination is invalid and it reports the fact. In this case, the
outcome of the Repeat Check is also forced to 'No Repeat' (i.e. �ag isRepeat is set to
false).

Fig. 7.3: The Send Packet Procedure

The OutComponent provides visibility over its internal state but it does not provide au-

c©2019 P&P Software GmbH. All Rights Reserved. 50

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

tomatic noti�cations in case of changes in its internal state. The OutComponent provides
access to the attributes of the command or report it encapsulates but it only prede�nes
dummy values for them. The set and value of command or report attributes is therefore an
adaptation point for the OutComponent.

The default implementation of the Enable Check uses one of the services provided by the
OutRegistry to determine the enable status of a command or report (see section 7.1.5).

The tables at the end of this section lists the adaptation points and requirements of the
OutComponent component. The �Acknowledge Level Attribute� adaptation point is only
meaningful for out-going commands. In the case of OutComponents representing out-going
reports, this adaptation point is therefore ignored.

Table 7.1: Adaptation Points for OutComponent Component

AP ID Adaptation Point Default Value

OCM-1 Initialization Check in Initial-
ization Procedure of OutCom-
ponent

Same value as in Base Component

OCM-2 Initialization Action in Initial-
ization Procedure of OutCom-
ponent

Same value as in Base Component

OCM-3 Con�guration Check in Reset
Procedure of OutComponent

Same value as in Base Component

OCM-4 Con�guration Action in Reset
Procedure of OutComponent

Same value as in Base Component

OCM-5 Shutdown Action in Base
Component of OutComponent

Same value as in Base Component

OCM-6 Execution Procedure of Out-
Component (closes BAS-6)

Same value as in Base Component

OCM-7 Service Type Attribute of Out-
Component

No default provided at framework level

OCM-8 Command/Report Sub-Type
Attribute of OutComponent

No default provided at framework level

OCM-9 Destination Attribute of Out-
Component

No default provided at framework level

OCM-10 Acknowledge Level Attribute
of OutComponent

Default value is: 'no acknowledge required'
(only relevant for OutCommands)

OCM-11 Discriminant Attribute of Out-
Component

Default value is: 'no discriminant'

OCM-12 Parameter Attribute of Out-
Component

Default value is: 'no parameters'

OCM-13 Enable Check Operation of
OutComponent

Query the OutRegistry for the enable status
of the command or report encapsulated in the
OutComponent and set value of isEnable ac-
cordingly

OCM-14 Ready Check Operation of
OutComponent

Set value of isReady �ag to true

OCM-15 Repeat Check Operation of
OutComponent

Return �No Repeat�

c©2019 P&P Software GmbH. All Rights Reserved. 51

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

AP ID Adaptation Point Default Value

OCM-16 Update Action of OutCompo-
nent

Set Time Stamp of OutComponent to current
time

OCM-17 Serialize Operation of Out-
Component

No default de�ned at framework level

OCM-18 Operation to Report Invalid
Destination of an OutCompo-
nent

Generate SNDPCKT_INV_DEST Error Re-
port with invalid destination as a parameter

Table 7.2: Requirements Applicable to OutComponent Component

Req. ID Requirement Text

P-OCM-1/S The CORDET Framework shall provide an OutComponent component as an
extension of the Base Component.

P-OCM-2/S The behaviour of the OutComponent in state CONFIGURED shall be as de-
�ned by the OutComponent State Machine of �gure 7.2.

P-OCM-3/A The OutComponent State Machine shall support the adaptation points OCM-
*.

P-OCM-4/S The OutComponent component shall provide access to the attributes of the
command or report instance that the OutComponent encapsulates.

7.1.2 The OutFactory Component

When an application needs to send a command or a report to another application, it must
�rst create an instance of an OutComponent to encapsulate the out-going command or
report. The OutFactory component encapsulates the instance creation process.

The OutFactory component is a factory component in the sense of section 4.1. As such it is
subject to the general factory component requirements stated in that section. The present
section de�nes the requirements which are speci�c to the OutFactory component.

Like all factory components, the OutFactory component o�ers a Make operation. The Make
operation takes as arguments the type, sub-type and discriminant value of the out-going
command or report. It is recalled that these three attributes fully determine the format
of the command or report instance (see sections 5.1.1 and 5.2.1. They therefore provide
su�cient information to let the OutFactory create an uncon�gured instance of the command
or report.

Depending on the allocation policy used internally in the OutFactory, the OutComponent
component may be either in state CREATED, or in state INITIALIZED, or in state CON-
FIGURED. It is then the responsibility of the user application to initialize and/or con�gure
the OutComponent.

The Make operation of the OutFactory sets the values of the following attributes of the newly
created command or report:

• The service type, command or report sub-type, and discriminant are set according to
the arguments of the Make operation.

• The identi�er attribute is set to a value representing the number of command or report
instances which the factory has created since it was initialized.

c©2019 P&P Software GmbH. All Rights Reserved. 52

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

• The source attribute is set to the identi�er of the host application.

Thus, a command or report component which is returned by the OutFactory has valid
and correct values for the following attributes: service type, command or report sub-type,
discriminant, identi�er, and source. Other attributes must be set as part of the command
or report con�guration by the host application. Note, however, that the time stamp is set
by the OutLoader at the time the OutComponent is loaded in the OutManager (see next
section) and the sequence counter is set by the OutStream directly on the out-going packet
at the time the packet is handed over to the middleware (see section 6.2.1).

The OutFactory component does not de�ne any adaptation points in addition to those
applicable to generic factory components (see section 4.1).

Table 7.3: Requirements Applicable to OutFactory Component

Req. ID Requirement Text

P-OFT-1/S The OutFactory component shall encapsulate the instance creation process for
OutComponent components.

P-OFT-2/S The Make operation of the OutFactory component shall take as arguments
the service type, command or report sub-type and discriminant value of the
command or report to be encapsulated by the OutComponent.

P-OFT-3/S The OutComponents returned by the Make operation of the OutFactory shall
have their service type, command/report sub-type, and discriminant attribute
set in accordance with the value of the arguments of the Make operation.

P-OFT-4/S The OutComponents returned by the Make operation of the OutFactory shall
have their identi�er attribute set to represent the number of components suc-
cessfully created by the factory since it was initialized.

7.1.3 The OutLoader Component

After a user application has obtained an OutComponent component from an OutFactory,
it loads it into the OutLoader. This component is responsible for selecting the appropriate
OutManager to process the out-going command or report.

For this purpose, the OutLoader maintains a list of OutManagers (the List of OutMan-
agers or LOM). The LOM holds all the OutManagers which have been instantiated in an
application.

The OutLoader component o�ers one operation � the Load operation � to load an Out-
Component into an OutManager. When this operation is called, the OutLoader decides to
which OutManager in the LOM to load an OutComponent. The policy for selecting the
OutManager in the LOM is an adaptation point. After the OutComponent is loaded into
the selected OutManager, the procedure may activate the selected OutManager (i.e. it may
release the thread which is controlling the execution of the selected OutManager). This is
useful where there is a need to process the out-going command or report as soon as it is
loaded into the OutLoader (normally, the command or report would only be processed when
the OutManager is executed).

The Load operation is modelled by the procedure shown in �gure 7.4. A call to operation
Load causes this procedure to be started and executed. The procedure executes in one single
cycle and therefore terminates as part of the call to operation Load.

c©2019 P&P Software GmbH. All Rights Reserved. 53

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

No facilities are de�ned for dynamically changing the set of OutManagers in the LOM.
Changes in the list of OutManagers can only be done by recon�guring and then resetting
the OutLoader component.

Fig. 7.4: The OutLoader Load Procedure

Table 7.4: Adaptation Points for OutLoader Component

AP ID Adaptation Point Default Value

OLD-1 Initialization Check in Ini-
tialization Procedure of Out-
Loader

Returns 'check successful' if the size of the
LOM (List of OutManagers) has been set to
a positive integer value.

OLD-2 Initialization Action in Ini-
tialization Procedure of Out-
Loader

Allocate resources for LOM and return 'Ac-
tion Successful' i� the allocation succeeds

OLD-3 Con�guration Check in Reset
Procedure of OutLoader

Returns 'check successful' i� all the informa-
tion is available to update (or initialize) the
value of the LOM.

OLD-4 Con�guration Action in Reset
Procedure of OutLoader

Update (or initialize) the LOM and return
'Action Successful'

OLD-5 Shutdown Action of Out-
Loader

Same as in Base Component.

OLD-6 Execution Procedure of Out-
Loader (closes BAS-6)

Same as in Base Component.

OLD-7 OutManager Selection Opera-
tion

Select the �rst OutManager in the LOM

OLD-8 OutManager Activation Oper-
ation

Do nothing

OLD-9 Operation to set Set Time-
Stamp in Outgoing Packets

No value de�ned at framework level

c©2019 P&P Software GmbH. All Rights Reserved. 54

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

Table 7.5: Requirements Applicable to OutLoader Component

Req. ID Requirement Text

P-OLD-1/S The CORDET Framework shall provide an OutLoader component as an ex-
tension of the Base Component.

P-OLD-2/A The OutLoader component shall support the adaptation points OLD-*.

P-OLD-3/S The OutLoader component shall o�er a Load operation to load an OutCom-
ponent instance into an OutManager.

P-OLD-4/S Execution of the Load operation shall cause the Load Procedure of �gure 7.4
to be run.

P-OLD-5/C An application shall instantiate an OutLoader component only once.

c©2019 P&P Software GmbH. All Rights Reserved. 55

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

7.1.4 The OutManager Component

This component is responsible for maintaining a list of pending OutComponents and for
repeatedly executing them until they are serialized and sent to their destination. The list
of pending commands is called the Pending OutComponent List or POCL. The POCL has
a �xed size which is de�ned when the OutManager is initialized.

The OutManager component o�ers a Load operation through which an OutComponent can
be added to the POCL (see activity diagram in �gure 7.5). This operation is called by the
OutLoader of the previous section. The Load operation may fail if the list is full. In this
case, the OutComponent is released. This protects the application against resource leaks in
case of repeated Load failures.

The Load operation registers the newly loaded OutComponent with the OutRegistry using
its StartTracking operation (see �gure 7.7). Henceforth, and as long as the OutComponent
remains loaded in the OutManager, its state is tracked by the OutRegistry.

Fig. 7.5: The OutManager Load Procedure

The OutComponents loaded into the POCL must be fully con�gured (i.e. they must be
in state CONFIGURED). It is the responsibility of the user of the OutManager to ensure
that this constraint is complied with. Note that, since OutComponents are loaded into the
OutManager by the OutLoader (see previous section), this constraint must be enforced by
the host application when it loads an out-going command or report into the OutLoader.
Violation of this constraint will result in an OutComponent permanently remaining in the
POCL of the OutManager.

The OutManager maintains a counter of successfully loaded OutComponents. The counter
is initialized to zero when the OutManager is reset.

The order in which the items in the POCL are processed by the OutManager is unspeci�ed.

There is no mechanism to �unload� a pending OutComponent. The OutManager au-
tonomously returns an OutComponent to the OutFactory when the OutComponent has
been sent to its destination (i.e. when the OutComponent is in state TERMINATED) or
when it has been aborted (i.e. when the OutComponent is in state ABORTED).

The OutManager component is de�ned as an extension of the Base Component of section 4.2.

c©2019 P&P Software GmbH. All Rights Reserved. 56

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

Fig. 7.6: The OutManager Execution Procedure

It uses the Execution Procedure of the Base Component to process the pending commands.
The OutManager component processes the pending commands by sending them an Execute

command. After each Execute command, the state of the OutComponent is reported to
the OutRegistry using the latter Update function (see �gure 7.7). Commands which have
been aborted or have been sent to their destination are removed from the POCL and are
returned to the OutFactory. The Execution Procedure of the OutManager is shown in �gure
7.6.

Normally, the OutManager is embedded within a Real Time Container (see reference [FW-
SP]) which is responsible for executing it. Thus, an application that is required to process
out-going commands or reports at di�erent levels of priority should use several OutManagers
(one for each level of priority) and should allocate them to Real Time Containers with a
matching priority.

Table 7.6: Adaptation Points for OutManager Component

AP ID Adaptation Point Default Value

OMG-1 Size of POCL of OutManager Default size is 1.

OMG-2 Initialization Check in Initial-
ization Procedure of OutMan-
ager (closes BAS-1)

Returns 'check successful' if the size of the
POCL has been set to a positive integer value.

c©2019 P&P Software GmbH. All Rights Reserved. 57

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

AP ID Adaptation Point Default Value

OMG-3 Initialization Action in Initial-
ization Procedure of OutMan-
ager (closes BAS-2)

Allocate resources for POCL and return 'Ac-
tion Successful' i� the allocation succeeds

OMG-4 Con�guration Check in Re-
set Procedure of OutManager
(closes BAS-3)

Same as in Base Component

OMG-5 Con�guration Action in Reset
Procedure (closes BAS-4)

Release all OutComponents in the POCL; re-
set the POCL; reset the counter of success-
fully loaded OutComponents; and return 'Ac-
tion Successful'

OMG-6 Shutdown Action in Base
Component of OutManager
(closes BAS-5)

Release all OutComponents in the POCL; re-
set the POCL

OMG-7 Execution Procedure in Base
Component of OutManager
(closes BAS-6)

Implemented as procedure of Manager Exe-
cution Procedure

OMG-8 Operation to Report POCL of
OutManager Full

Generate OUTMANAGER_POCL_FULL
Error Report

Table 7.7: Requirements Applicable to OutManager Component

Req. ID Requirement Text

P-OMG-1/S The CORDET Framework shall provide an OutManager component as an
extension of the Base Component.

P-OMG-2/A The OutManager component shall support the Adaptation Points OMG-*.

P-OMG-3/S The OutManager component shall o�er a Load operation to load an OutCom-
ponent instance in the POCL.

P-OMG-4/S The Load operation shall run the OutManager Load Procedure of �gure 7.5.

P-OMG-5/C An application shall ensure that the OutComponent components loaded in an
OutManager through the OutLoader are in state CONFIGURED.

7.1.5 The OutRegistry Component

This component acts as a registry for out-going commands and reports (namely for com-
mands or report which have been loaded into an OutManager).

The OutRegistry is de�ned as an extension of the Base Component of section 4.2. It has
two functions: (a) it keeps track of an out-going command's or report's state; and (b) it
stores the out-going command's or report's enable state.

The OutRegistry maintains a list of the last N commands or reports to have been loaded
in all OutManagers in an application. The OutRegistry maintains the state of each such
command or report. The command's or report's state in the OutRegistry can have one of
the following values:

• PENDING: the command or report is waiting to be sent

• ABORTED: the command or report was aborted because it was disabled when it was
loaded

c©2019 P&P Software GmbH. All Rights Reserved. 58

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

• TERMINATED: the command or report has been passed to the OutStream

The value of N (the maximum number of items which can be tracked by the OutRegistry)
is �xed and is an initialization parameter.

An OutComponent is �rst registered with the OutRegistry when it is loaded into the Out-
Manager through the latter Load operation. Subsequently, the information in the OutReg-
istry is updated by the OutManagers every time a command or report is executed. Normally,
a command's or report's state in the OutRegistry eventually becomes either ABORTED or
TERMINATED. The only situation where this is not the case is1: if an OutManager is
reset, then the state of a command or report that was in state PENDING at the time the
OutManager was reset will remain equal to PENDING.

The OutRegistry uses the identi�er attribute (see sections 5.1.1 and 5.2.1) as the key through
which the command or report state is stored.

Fig. 7.7: The Registry Start Tracking and Registry Update Procedures

In order to perform the tasks described above, the OutRegistry o�ers two operations:
StartTracking and Update. These operations run the procedures Registry Start Track-
ing and Registry Update shown in �gure 7.7. Operation StartTracking is performed by
the Load operation of an OutManager to register an OutComponent with the OutRegistry.
Operation Update is performed by the Execution Procedure of an OutManager to ask the
OutRegistry to update its information about an OutComponent's state.

The OutRegistry stores the enable state of out-going commands and reports. The enable
state of out-going command and reports can be controlled at three levels:

(a) At the level of the service type (all commands or reports of a certain type are disabled)

(b) At the level of the service sub-type (all commands or reports matching a certain [type,
sub-type] pair are disabled)

1This exception could be avoided if the OutRegistry were noti�ed of the reset of the OutManager. This

is not done for reasons of simplicity and because it is expected that applications which reset an OutManager

will normally also reset the OutRegistry.

c©2019 P&P Software GmbH. All Rights Reserved. 59

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

(c) At the level of the discriminant (all commands or reports matching a certain [type,
sub-type, discriminant] triplet are enabled or disabled)

The enable state of a particular command or report is derived from these three enable levels
by running the Enable State Determination Procedure of �gure 7.8.

The OutRegistry o�ers an API through which all three levels of enable state can be set and
read. By default, all enable states are set to: �enabled�. The enable states are con�guration
parameters for the OutRegistry which are reset to: �enabled� every time the component is
reset.

As discussed in section 7.1.1, by default, the Enable Check of an out-going command or
report determines whether the command or report is enabled or not by reading its enable
status from the OutRegistry.

Fig. 7.8: The Enable State Determination Procedure

Table 7.8: Adaptation Points for OutRegistry Component

AP ID Adaptation Point Default Value

ORG-1 Maximum Number of Track-
able Commands/Reports for
OutRegistry

Default value is 1.

ORG-2 Initialization Check in Initial-
ization Procedure of OutReg-
istry (closes BAS-1)

Returns 'check successful' if the maximum
number of trackable commands/reports has
been set to a positive integer value.

ORG-3 Initialization Action in Initial-
ization Procedure of OutReg-
istry (closes BAS-2)

Allocate the resources for tracking the com-
mands and reports and returns: 'action suc-
cessful' if the allocation succeeds or 'action
failed' if the allocation fails.

c©2019 P&P Software GmbH. All Rights Reserved. 60

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

AP ID Adaptation Point Default Value

ORG-4 Con�guration Check in Re-
set Procedure of OutRegistry
(closes BAS-3)

Same value as in Base Component

ORG-5 Con�guration Action in Re-
set Procedure of OutRegistry
(closes BAS-4)

Set the enable state for all kinds of commands
and reports to: 'enabled'; clear all informa-
tion about tracked commands and reports;
and return: 'action successful'.

ORG-6 Shutdown Action of OutReg-
istry (closes BAS-5)

Set the enable state for all kinds of commands
and reports to: 'enabled'; clear all informa-
tion about tracked commands and reports.

ORG-7 Execution Procedure of Out-
Registry (closes BAS-6)

Same value as in Base Component

Table 7.9: Requirements Applicable to OutRegistry Component

Req. ID Requirement Text

P-ORG-1/S The CORDET Framework shall provide an OutRegistry component as an ex-
tension of the Base Component.

P-ORG-2/A The OutRegistry component shall support the adaptation points ORG-*.

P-ORG-3/S The OutRegistry shall o�er a StartTracking operation to run the Registry
Start Tracking Procedure of �gure 7.7.

P-ORG-4/S The OutRegistry shall o�er an Update operation to run the Registry Update
Procedure of �gure 7.7.

P-ORG-5/S The OutRegistry component shall provide an API through which the state of
a command or report in the repository (PENDING, ABORTED, and TER-
MINATED) can be queried.

P-ORG-6/S The OutRegistry component shall provide an API through which the enable
state of a service type, service sub-type or discriminant value can be set and
read.

P-ORG-7/S The OutRegistry component shall provide an API through which the enable
state of a speci�c out-going command or report can be determined in accor-
dance with the logic of the Enable State Determination Procedure of �gure
7.8.

P-ORG-8/S The OutRegistry shall use the command/report identi�er attribute as the key
to store and make available information about commands and reports.

P-ORG-9/C An application shall instantiate the OutRegistry component only once.

7.2 Management of Incoming Commands and Reports

Incoming commands are commands in a provider application (namely in an application
which receives commands from a service user) and incoming reports are reports in a user
application (namely in an application which receives reports from a service provider).

Incoming commands and incoming reports are treated together because their management
is performed in a similar way.

The management model speci�ed by the framework for incoming commands and reports is

c©2019 P&P Software GmbH. All Rights Reserved. 61

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

based on the de�nition of the following components:

• InCommand This component models the generic behaviour of a command on a
provider application (namely of an incoming command). Concrete incoming com-
mands are de�ned as extensions of the base InCommand component.

• InReport This component models the generic behaviour of a report on a user ap-
plication (namely of an incoming report). Concrete incoming reports are de�ned as
extensions of the base InReport component.

• InStream This component models the interface through which incoming commands
and reports are received by an application.

• InFactory The InStream delivers an incoming command or incoming report as a
packet consisting of a stream of bytes which must be deserialized to create an InCom-
mand or InReport instance to represent it. The InFactory component encapsulates
the component instance creation process.

• InLoader This component is responsible for retrieving packets which become avail-
able at the InStreams. The InLoader may either forward an incoming packet (if its
destination is not the host application), or it may process it as an incoming report
(if the packet holds a report), or it may process it as an incoming command (if the
packet holds a command). The processing of incoming commands or reports is as
follows. The InLoader deserializes the packet and creates an InCommand or InReport
instance to represent it and then loads it into an InManager. The InManager will be
responsible for executing the InCommand or InReport.

• InManager This component controls the execution of an incoming command or in-
coming report until all its actions have been completed.

• InRegistry This component acts as a registry for pending InCommand and InReport.
It can provide information about their state to other parts of the applications.

Note that InFactory, InLoader, InRegistry and InStream are singletons and it is therefore
assumed that only one instance of each exists in an application.

Fig. 7.9: The Management of Incoming Commands and Reports

The process through which an application processes an incoming command or incoming

c©2019 P&P Software GmbH. All Rights Reserved. 62

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

report is shown using an information notation in �gure 7.9 and can be summarized as
follows:

1. The InStreams receive packets from other applications. The packets are collected from
the InStreams by the InLoader.

2. The InLoader checks the destination of the packet. If it is the host application itself
(namely the application within which the InLoader is running), it processes the packet
as described below. If it is another application, the InLoader forwards the packet to
another application (either its eventual destination or a routing application on the
way to its eventual application).

3. An incoming packet may represent either a command or a report. The InLoader
identi�es the type of the command or report and asks the InFactory to provide an
instance of an InCommand (if the packet represents a command) or of an InReport
(if the packet represents a report) of that type.

4. The InCommand or InReport are initially uncon�gured. They are con�gured by dese-
rializing the packet representing the incoming command or incoming report. Hence-
forth the incoming command or report is represented by the con�gured InCommand
or InReport instance.

5. The InLoader loads the command or report into an InManager. The InManager is
responsible for executing the command or report. In the case of incoming commands,
this may require several execution cycles. In the case of incoming reports, at most
one execution cycle is su�cient. Depending on the outcome of the conditional checks
associated to the incoming command or report, execution may result either in a normal
termination or in the command or report being aborted.

6. When the command or report has terminated execution or has been aborted, the
InManager returns the InCommand or InReport component instance that held it to
the InFactory.

7. The InRegistry is noti�ed of the arrival of incoming commands and reports and of
changes of their state. The Inregistry makes this information available to other parts
of the host application.

The following subsections specify each component type involved in the processing of incom-
ing commands or reports with the exception of the InStream component which was speci�ed
in section 6.2.2.

7.2.1 The InFactory Component

When an application receives a packet representing a command or a report from another
application, it must �rst create an instance of an InCommand or InReport to encapsulate the
incoming command or report. The InFactory component encapsulates the instance creation
process.

The InFactory component is a factory component in the sense of section 4.1. As such it is
subject to the general factory component requirements stated in that section. The present
section de�nes the additional requirements speci�c to the InFactory component.

Like all factory components, the InFactory component o�ers a Make operation. The Make

operation takes as arguments the type, sub-type and discriminant value of the incoming
command or report. It is recalled that these three attributes fully determine the format
of the command or report instance (see sections 5.1.1 and 5.2.1). They therefore provide
su�cient information to let the InFactory create an uncon�gured instance of the command

c©2019 P&P Software GmbH. All Rights Reserved. 63

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

or report.

Depending on the allocation policy used internally in the InFactory, the InCommand or
InReport component may be either in state CREATED, or in state INITIALIZED, or in
state CONFIGURED. It is then the responsibility of the user application to initialize and/or
con�gure the InCommand or InReport.

A command or report component which is returned by the InFactory has valid values for
the following attributes: service type, command or report sub-type, and discriminant. All
other attributes must be set as part of the command con�guration which is performed under
the control of the InLoader (see next section).

The InFactory component does not de�ne any adaptation points in addition to those appli-
cable to generic factory components (see section 4.1).

Table 7.10: Requirements Applicable to InFactory Component

Req. ID Requirement Text

P-IFT-1/S The InFactory component shall encapsulate the instance creation process for
InCommand and InReport components.

P-IFT-2/S The Make operation of the InFactory component shall take as arguments the
service type, command or report sub-type and discriminant value of the com-
mand or report to be encapsulated by the InCommand or InReport.

P-IFT-3/S The InCommands or InReports returned by the Make operation of the OutFac-
tory shall have their service type, command/report sub-type, and discriminant
attribute set in accordance with the value of the arguments of the Make oper-
ation.

7.2.2 The InLoader Component

The InLoader is responsible for retrieving incoming packets which become available at an
InStream.

The InLoader component is de�ned as an extension of the Base Component of section 4.2.
It overrides its Execution Procedure with the procedure shown in �gure 7.10 (the InLoader
Execution Procedure).

The InLoader should be executed when one or more packets have become available at the
InStream. The logic of its execution procedure can be summarized as follows. The procedure
processes incoming packets one by one. A packet is retrieved from the InStream through the
GetPacket operation. If the operation does not return any packet, then the procedure stops
and waits for the next execution. If instead the GetPacket operation returns a fresh packet,
the procedure extracts its destination. This is an adaptation point because it requires
knowledge of the packet's layout. If the packet's destination is invalid (the destination
validity check is another adaptation point), the procedure reports the fact and then attempts
to retrieve the next packet from the InStream (or it holds until the next execution cycle if
no more packets are available in the InStream).

If the packet destination is valid but is not the host application, then the packet is re-
routed. This means that a re-routing destination is determined for the packet and the
packet is forwarded to this re-routing destination. The re-routing destination can be either
the eventual packet destination (if the host application has a direct link to the packet's

c©2019 P&P Software GmbH. All Rights Reserved. 64

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

destination) or it can be an intermediate destination. The packet is forwarded by directly
loading it into the OutStream associated to the re-routing destination. The OutStream is
retrieved through the OutStreamRegistry component of section 6.2.1.

The determination of the re-routing destination depends on the connection topology of the
system within which the application is embedded and is therefore an adaptation point. The
re-routing information is a con�guration-level information which can only be modi�ed by
resetting the InLoader.

Fig. 7.10: The InLoader Execution Procedure

If the packet destination is the host application, then the incoming packet is processed by
the Load Command/Report Procedure. This procedures is shown as activity diagrams in
�gure 7.11. Its logic can be summarized as follows.

The procedures begin by retrieving the command or report type from the packet. The type
is given by the triplet: [service type, service sub-type, discriminant]. This is an adaptation
point because it requires knowledge of the packet layout. If the packet type is not valid (i.e.
if it is not supported by the host application), then the packet is rejected and the incoming
command or report is deemed to have failed its Acceptance Check.

If the packet type is valid, it is used to retrieve an InCommand or InReport instance from
the InFactory (it is recalled that the type determines whether the packet holds a command
or a report). The InCommand or InReport instance is retrieved from the InFactory using
its Make operation. If the creation of the InCommand or InReport instance fails, the packet
is rejected and the incoming command or report is deemed to have failed its Acceptance

c©2019 P&P Software GmbH. All Rights Reserved. 65

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

Check.

If the creation of the InCommand or InReport instance succeeds, the packet is deserialized
to con�gure the InCommand or InReport instance. After the deserialization has been com-
pleted, the InCommand or InReport is initialized and reset. The reset process is used as
part of the acceptance check for the incoming command or report. If the information in
the packet was syntactically correct and complete and if its CRC attribute is correct, then
the initialization and reset operations succeed and the InCommand or InReport enters state
CONFIGURED.

If the InCommand or InReport fails to enter its state CONFIGURED, it is rejected and the
InCommand or InReport is deemed to have failed its Acceptance Check and is returned to
the InFactory.

If the command or report is successfully con�gured, then it must be loaded into an In-
Manager. For this purpose, the InLoader maintains a list of InManagers (the LIM or List
of InManagers). The size and content of this list are �xed and are de�ned when the In-
Loader is con�gured. The selection algorithm for the InManagers is an adaptation point.
By default, the LIM has two entries and the InLoader selects the �rst item in the LIM for
incoming InCommands and second item for incoming InReports. No facilities are provided
for dynamically changing the set of InManagers. Changes in the set of InManagers can only
be done by recon�guring and then resetting the component.

The Load operation in the InManager may either succeed or fail (see section 7.2.5). If it
succeeds, the InCommand or InReport is deemed to have passed its Acceptance Check.

If the Load operation in the InManager fails, the InCommand or InReport is deemed to
have failed its Acceptance Check. This results in the InCommand or InReport component
being returned to the InFactory.

Thus, in summary, an InCommand or InReport is deemed to have failed its Acceptance
Check if any of the following conditions is satis�ed:

• The incoming packet holding the InCommand or InReport has an invalid type;

• The InFactory fails to return a component to hold the InCommand or InReport en-
capsulated in the incoming packet;

• The InCommand or InReport fails to enter state CONFIGURED;

• The InCommand or InReport fails to be loaded into the InManager.

In all other cases, the InCommand or InReport is regarded as having passed its Acceptance
Check.

Failure of the Acceptance Check is reported. The reporting of the failure is an adaptation
point. The passing of the Acceptance Check has no consequences for an InReport whereas in
the case of InCommands it may result in an Acceptance Successful Report being generated
to the command's sender if this is required by the setting of the Acknowledge Level attribute
of the InCommand (i.e. each InCommand carries information that determines whether its
passing its Acceptance Check ought to be reported to the command sender, see section
5.1.1).

c©2019 P&P Software GmbH. All Rights Reserved. 66

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

Fig. 7.11: The InLoader Load Command/Report Procedure

Table 7.11: Adaptation Points for InLoader Component

AP ID Adaptation Point Default Value

ILD-1 Initialization Check in Initial-
ization Procedure of InLoader
(closes BAS-1)

Return �check successful' i� the sizes of the
LIM is a positive integer

ILD-2 Initialization Action in Initial-
ization Procedure of InLoader
(closes BAS-2)

Allocate resources for the LIM and return
�Action Successful' i� the allocation succeeds

ILD-3 Con�guration Check in Reset
Procedure of InLoader (closes
BAS-3)

Returns �check successful' if: (a) the infor-
mation to update (or initialize) the content
of the LIM is valid; and (b) the information
to re-route packets is valid.

ILD-4 Con�guration Action in Reset
Procedure of InLoader (closes
BAS-4)

(a) update (or initialize) content of LIM; and
(b) update (or initialize) packet re-routing in-
formation.

ILD-5 Shutdown Action of InLoader
(closes BAS-5)

Same as in Base Component.

ILD-6 Execution Procedure of In-
Loader (closes BAS-6)

Implemented as InLoader Execution Proce-
dure.

ILD-7 Size of List of InManagers in
InLoader

Default size is 2.

c©2019 P&P Software GmbH. All Rights Reserved. 67

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

AP ID Adaptation Point Default Value

ILD-8 Content of List of InManagers
in InLoader

No default provided at framework level.

ILD-9 Operation to Determine Re-
Routing Destination of Packets

Re0routing destination is set to the destina-
tion of the incoming packet.

ILD-10 Operation to Get Packet Des-
tination

No default provided at framework level.

ILD-11 Operation to Check Packet
Destination Validity

Always returns �destination is valid'.

ILD-12 Operation to Report Packet
Destination Invalid

Generate error report INLOADER_INV_-
DEST with the destination identi�er as a pa-
rameter

ILD-13 Operation to Get Packet Type No default provided at framework level

ILD-14 Operation to Report Accep-
tance Failure

For InCommands: generate command ac-
knowledge report CMD_ACK_ACC_FAIL
with command's identi�er and with identi�er
of reason of failure as parameters.. For InRe-
ports: generate error report INLOADER_-
ACC_FAIL with report's identi�er and with
identi�er of reason of acceptance failure as pa-
rameters.

ILD-15 Operation to Report Accep-
tance Success

Generate command acknowledge report
CMD_ACK_ACC_SUCC with command's
identi�er as parameter.

ILD-16 Operation to Deserialize
Packet

No default provided at framework level.

ILD-17 Operation to Select InMan-
ager where Incoming Report or
Command is Loaded

For InCommands, select �rst InManager in
LIM; for InReport, select second InManager
in LIM.

ILD-18 Operation to Check Packet
Type Validity

No default provided at framework level

Table 7.12: Requirements Applicable to InLoader Component

Req. ID Requirement Text

P-ILD-1/S The CORDET Framework shall provide an InLoader component as an exten-
sion of the Base Component.

P-ILD-2/A The InLoader component shall support the adaptation points ILD-*.

P-ILD-3/S The InLoader component shall o�er a Load operation to load a command or
report in an InManager.

P-ILD-4/S The Load operation shall run the InLoader Execution Procedure of �gure 7.10.

P-ILD-5/C An application shall instantiate an InLoader component only once.

7.2.3 The InCommand Component

The InCommand component encapsulates an incoming command in a provider application.
This component enforces the generic behaviour that is common to all incoming commands
irrespective of their type and it provides read-only access to a command's attributes. The

c©2019 P&P Software GmbH. All Rights Reserved. 68

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

InCommand component is an extension of the Base Component of section 4.2.

Incoming commands must be accepted before they can be executed (see section 5.1.4). The
acceptance check is implemented partly by the InLoader (see section 7.2.2) and partly by
the initialization and con�guration checks of the InCommand itself.

The behaviour of a command that has been accepted is modelled by the state machine
shown in �gure 7.12 (the InCommand State Machine). This state machine is embedded
within the CONFIGURED state of the Base State Machine.

Fig. 7.12: The InCommand State Machine

When the state machine is started (i.e. when the command is accepted and the InCommand
enters state CONFIGURED), it enters state ACCEPTED. In this state, the InCommand
component waits for sequences of Execute and Terminate commands. The constraint that
an InCommand component should be sent Execute and Terminate requests in sequence is
enforced by the InManager which is responsible for controlling the execution of InCommands
(see section 7.2.5).

Execution of the InCommand state machine in state ACCEPTED causes it to perform the
Ready Check. The Ready Check � like all other command checks and command actions �
is an adaptation point.

If the Ready Check is failed (i.e. if the Ready Check indicates that the command is not yet
ready to start execution), the command remains in state ACCEPTED.

If the Ready Check is passed (i.e. if the Ready Check indicates that the command is ready
to start execution), the command executes the Start Action and, depending on its outcome,
it makes a transition either to state ABORTED or to state PROGRESS.

In state PROGRESS, the command executes its Progress Action. If the completion out-
come of the Progress Action is "not completed� (indicating that the command has not yet
completed execution), the InCommand remains in state PROGRESS. If, instead, the com-
pletiong outcome of the Progress Action is �completed� (indicating that all progress steps
have been executed), then the InCommand moves out of the PROGRESS state and executes

c©2019 P&P Software GmbH. All Rights Reserved. 69

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

its termination action. The outcome of the termination action determines whether the com-
mand enters TERMINATED (to indicate a nominal end of the command) or ABORTED
(to indicate that either one or more of its execution steps have failed or that its termination
action has failed).

The Progress Action is responsible for updating the Progress Step Identi�er. A change in
the value of this identi�er marks the end of a Progress Step. A Progress step is a set logically
related execution steps which are executed in sequence.

If the command is neither terminated nor aborted in the �rst Execute-Terminate cycle, it
will be sent further pairs of Execute-Terminate commands by its InManager and will repeat
the behaviour described in the previous paragraphs.

The InCommand component is responsible for generating acknowledge reports. The ac-
knowledge reports are generated: at the end of the start action; during execution of the
progress action; and at the end of the termination action. At the end of the start and
termination actions, either a success or a failure acknowledge report is generated depending
on the outcome of the action. During the execution of the progress action, failure reports
are generated whenever an execution step fails whereas success reports are generated when-
ever a progress step has terminated successfully. Success reports are only generated if the
corresponding acknowledge �ag is set in the InCommand.

The generation of the acknowledge reports is an adaptation point for the InCommand. Note
that the acknowledge report for the command acceptance is generated by the InLoader
component, see section 7.2.2.

The InCommand component provides visibility over all attributes of the command it en-
capsulates but only prede�nes dummy values for them. The set and value of the command
attributes is therefore an adaptation point for the InCommand.

Table 7.13: Adaptation Points for InCommand Component

AP ID Adaptation Point Default Value

ICM-1 Initialization Check in Initial-
ization Procedure of InCom-
mand

Returns �check successful' if information for
initializing InCommand using data in incom-
ing packet is valid

ICM-2 Initialization Action in Initial-
ization Procedure of InCom-
mand

Use information in incoming packet to initial-
ize InCommand and return �action successful'

ICM-3 Con�guration Check in Reset
Procedure of InCommand

Returns �check successful' if information car-
ried by packet is valid

ICM-4 Con�guration Action in Reset
Procedure of InCommand

Use information in incoming packet to con�g-
ure InCommand and return �action success-
ful'

ICM-5 Shutdown Action of InCom-
mand (closes BAS-5)

Same value as in Base Component

ICM-6 Execution Procedure of In-
Command (closes BAS-6)

Same value as in Base Component

ICM-7 Ready Check of InCommand Return �command is ready'

ICM-8 Start Action of InCommand Set action outcome to �success'

ICM-9 Progress Action of InCom-
mand

Set action outcome to �completed'

c©2019 P&P Software GmbH. All Rights Reserved. 70

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

AP ID Adaptation Point Default Value

ICM-10 Termination Action of InCom-
mand

Set action outcome to �success'

ICM-11 Abort Action of InCommand Do nothing

ICM-12 Operation to Report Start
Failed for InCommand

Generate command acknowledge report
CMD_ACK_STR_FAIL with command's
identi�er and with identi�er of reason of
failure as parameters.

ICM-13 Operation to Report Start Suc-
cessful for InCommand

Generate command acknowledge report
CMD_ACK_STR_SUCC with command's
identi�er as parameter.

ICM-14 Operation to Report Progress
Failed for InCommand

Generate command acknowledge report
CMD_ACK_PRG_FAIL with command's
identi�er, progress step and with identi�er of
reason of failure as parameters.

ICM-15 Operation to Report Progress
Successful for InCommand

Generate command acknowledge report
CMD_ACK_PRG_SUCC with command's
identi�er and progress step as parameters.

ICM-16 Operation to Report Termina-
tion Failed for InCommand

Generate command acknowledge report
CMD_ACK_TRM_FAIL with command's
identi�er and with identi�er of reason of
failure as parameters.

ICM-17 Operation to Report Report
Termination Successful for In-
Command

Generate command acknowledge report
CMD_ACK_TRM_FAIL with command's
identi�er as parameter.

ICM-18 Service Type Attribute of In-
Command

No default provided at framework level

ICM-19 Command Sub-Type Attribute
of InCommand

No default provided at framework level

ICM-20 Discriminant Attribute of In-
Command

Default value is: �no discriminant'

ICM-21 Parameter Attributes of In-
Command

Default value is: �no parameters'

Table 7.14: Requirements Applicable to InCommand Component

Req. ID Requirement Text

P-ICM-1/S The CORDET Framework shall provide an InCommand component as an
extension of the Base Component to encapsulate an incoming command in a
provider application.

P-ICM-2/S The behaviour of the InCommand component in state CONFIGURED shall
be as de�ned by the InCommand State Machine of �gure 7.12.

P-ICM-3/A The InCommand component shall support the adaptation points ICM-*.

P-ICM-4/S The InCommand component shall provide visibility over the value of all the
attributes of the command it encapsulates.

c©2019 P&P Software GmbH. All Rights Reserved. 71

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

7.2.4 The InReport Component

The InReport component encapsulates an incoming report in a user application. This com-
ponent enforces the generic behaviour that is common to all incoming reports irrespective
of their type and it provides read-only access to a report's attributes.

The InReport component is an extension of the Base Component of section 4.2. Incoming
reports must be accepted before they can be executed (see section 5.2.4). The acceptance
check is implemented partly by the InLoader (see section 7.2.2) and partly by the initializa-
tion and con�guration checks of the InReport itself.

Fig. 7.13: The InReport Execution Procedure

The behaviour of a report that has been accepted is modelled by the procedure shown
in �gure 7.13 (the InReport Execution Procedure). This procedure is used as execution
procedure for the InReport. The procedure simply executes the InReport's Update Action
and then terminates. The Update Action is an adaptation point.

The InReport component provides visibility over all attributes of the reports it encapsulates
but only prede�nes dummy values for them. The set and value of the report attributes is
therefore an adaptation point for the InCommand.

Table 7.15: Adaptation Points for InReport Component

AP ID Adaptation Point Default Value

IRP-1 Initialization Check in Initial-
ization Procedure of InReport

Returns �check successful' if information for
initializing InReport using data in incoming
packet is valid

IRP-2 Initialization Action in Initial-
ization Procedure of InReport

Use information in incoming packet to initial-
ize InReport and return �action successful'

IRP-3 Con�guration Check in Reset
Procedure of InReport

Returns �check successful' if information for
con�guring InReport using data in incoming
packet is valid

IRP-4 Con�guration Action in Reset
Procedure of InReport

Use information in incoming packet to con�g-
ure InReport and return �action successful'

IRP-5 Shutdown Action of InReport
(closes BAS-5)

Same value as in Base Component

IRP-6 Execution Procedure of InRe-
port (closes BAS-6)

Same value as in Base Component

IRP-7 Update Action of InReport Do nothing

IRP-8 Service Type Attribute of In-
Report

No default provided at framework level

IRP-9 Sub-Type Attribute of InRe-
port

No default provided at framework level

IRP-10 Discriminant Attribute of In-
Report

Default value is: �no discriminant'

c©2019 P&P Software GmbH. All Rights Reserved. 72

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

AP ID Adaptation Point Default Value

IRP-11 Parameter Attribute of InRe-
port

Default value is: �no parameters'

Table 7.16: Requirements Applicable to InReport Component

Req. ID Requirement Text

P-IRP-1/S The CORDET Framework shall provide an InReport component as an ex-
tension of the Base Component to encapsulate an incoming report in a user
application.

P-IRP-2/A The InReport component shall support the adaptation points IRP-*.

P-IRP-3/S The InReport component shall provide visibility over the value of all the at-
tributes of the report it encapsulates.

7.2.5 The InManager Component

This component is responsible for maintaining a list of pending incoming commands and
reports and for repeatedly executing them until they are either aborted or terminated. The
list of pending commands and reports is called the Pending Command/Report List or PCRL.
The PCRL has a �xed size which is de�ned when the InManager is initialized.

The InManager component o�ers a Load operation through which an InCommand or In-
Report can be added to the PCLR (see activity diagram in �gure 7.14). This operation is
called by the InLoader of section 7.2.2. The Load operation may fail if the list is full. The
order in which the items in the PCRL are processed is unspeci�ed.

The Load operation registers the newly loaded InCommand or InReport with the InRegistry
using the latter StartTracking operation (see section 7.2.6). Henceforth, and as long as
the InCommand or InReport remains loaded in the InManager, its state is tracked by the
InRegistry.

The InCommand and InReport components loaded into the PCRL must be fully con�gured
(i.e. they must be in state CONFIGURED). Compliance with this constraint is guaranteed
by the logic of the InLoader of section 7.2.2.

The InManager maintains a counter of successfully loaded InCommands or InReports. The
counter is initialized to zero when the InManager is reset.

There is no mechanism to �unload� a pending command or report. The InManager au-
tonomously returns a command or report component to the InFactory when the component
has terminated execution. In the case of InCommands, execution can be terminated suc-
cessfully (in which case the InCommand component is in state TERMINATED) or unsuc-
cessfully (in which case the InCommand component is in state ABORTED). In the case of
InReports, execution terminates after they are executed once.

The InManager component is de�ned as an extension of the Base Component of section 4.2.
It uses the Execution Procedure of the Base Component to process the pending commands
and reports. The InManager component processes the pending commands and reports by
sending them an Execute command and a Terminate command (note that the Terminate
command has no e�ect on an InReport).

c©2019 P&P Software GmbH. All Rights Reserved. 73

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

Fig. 7.14: The InManager Load Procedure

After the Terminate command, the state of the InCommand or InReport is reported to
the InRegistry using the latter Update operation (see section 7.2.6). InCommands which
have terminated execution are removed from the PCRL and are returned to the InFactory.
InReports are returned to the InFactory after their �rst execution. The Execution Procedure
of the InManager is shown in �gure 7.15.

Normally, the InManager is embedded within a Real Time Container (see reference [FW-
SP]) which is responsible for executing it. Thus, an application that is required to process
commands and reports at di�erent levels of priority should use several InManagers (one for
each level of priority) and should allocate them to Real Time Containers with a matching
priority.

c©2019 P&P Software GmbH. All Rights Reserved. 74

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

Fig. 7.15: The InManager Execution Procedure

Table 7.17: Adaptation Points for InManager Component

AP ID Adaptation Point Default Value

IMG-1 Size of PCRL of InManager Default size is 1.

IMG-2 Initialization Check in Initial-
ization Procedure of InMan-
ager (closes BAS-1)

Returns �check successful' if the size of the
PCRL has been set to a positive integer value.

IMG-3 Initialization Action in Initial-
ization Procedure of InMan-
ager (closes BAS-2)

Allocate resources for PCRL and return �Ac-
tion Successful' i� the allocation succeeds

IMG-4 Con�guration Check in Re-
set Procedure of InManager
(closes BAS-3)

Same as in Base Component

IMG-5 Con�guration Action in Re-
set Procedure of InManager
(closes BAS-4)

Release all InCommands and InReports in
the PCRL; reset the counter of successfully
loaded InCommands and InReports; reset the
PCRL; and return �Action Successful'

IMG-6 Shutdown Action of InMan-
ager (closes BAS-5)

Release all InCommands and InReports in the
PCRL; reset the PCRL;

IMG-7 Execution Procedure of In-
Manager (closes BAS-6)

Implemented as InManager Execution Proce-
dure.

IMG-8 Operation to Report PCRL of
InManager Full

Generate INMANAGER_PCRL_FULL Er-
ror Report

c©2019 P&P Software GmbH. All Rights Reserved. 75

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

Table 7.18: Requirements Applicable to InManager Component

Req. ID Requirement Text

P-IMG-1/S The CORDET Framework shall provide an InManager component as an ex-
tension of the Base Component.

P-IMG-2/A The InManager component shall support the adaptation points IMG-*.

P-IMG-3/S The InManager component shall o�er a Load operation to load an InCommand
or InReport instance in the Pending Command/Report List (PCRL).

P-IMG-4/S The Load operation shall run the InManager Load Procedure of �gure 7.14.

7.2.6 The InRegistry Component

This component acts as a registry for incoming commands and reports (namely for com-
mands and reports which have been loaded into an InManager).

The function of the InRegistry is to keep track of an incoming command state or of an
incoming report state.

The InRegistry maintains a list of the last N commands or report to have been loaded in
one of the InManagers in an application. For each such command or report, the InRegistry
maintains a record of its state. The command or report state in the InRegistry can have
one of the following values:

• PENDING: the command or report is executing

• ABORTED: the command was aborted during its execution by the InManager

• TERMINATED: the command or report has successfully completed its execution

Note that state ABORTED only applies to incoming commands.

The value of N (the maximum number of commands or reports which are tracked by the
InRegistry) is �xed and is an initialization parameter.

An InCommand or InReport is �rst registered with the InRegistry when it is loaded into the
InManager through the latter Load operation. Subsequently,the information in the InReg-
istry is updated by an InManager every time a command or report is executed. Normally, a
command or report state in the InRegistry eventually becomes either ABORTED or TER-
MINATED. The only situation where this is not the case is when an InManager is reset. In
that case, commands and reports which were pending in the InManager at the time it was
reset may never terminate 2.

The InRegistry uses the command identi�er attribute (see section 5.1.1) as the key through
which the command state is classi�ed.

In order to perform the tasks described above, the InRegistry o�ers two operations: StartTracking
and Update. These operations implement the same behaviour as the operations of the same
name in the OutRegistry, namely they run, respectively, the Registry Start Tracking Pro-
cedure and the Registry Update Procedure (see �gure 7.7). Operation StartTracking is
called by the Load operation of an InManager to register an InCommand or InReport with

2This is due to the fact that, when the InManager is reset, its list of pending commands and reports is

cleared. It might be argued that the InRegistry should be noti�ed of this fact so as to give it a chance to

update the information it holds about commands which are currently in state PENDING. This is not done

for reasons of simplicity and because it is expected that applications which reset an InManager will also

reset the InRegistry.

c©2019 P&P Software GmbH. All Rights Reserved. 76

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

the InRegistry. Operation Update is called by the Execution Procedure of an InManager to
ask the InRegistry to update its information about an InCommand or InReport state.

Table 7.19: Adaptation Points for InRegistry Component

AP ID Adaptation Point Default Value

IRG-1 Maximum Number of Track-
able InCommands/InReports
in InRegistry

Default value is 1.

IRG-2 Initialization Check in Initial-
ization Procedure of InReg-
istry (closes BAS-1)

Returns �check successful' if the maximum
number of trackable InCommands/InReports
has been set to a positive integer value.

IRG-3 Initialization Action in Initial-
ization Procedure of InReg-
istry (closes BAS-2)

Allocate the resources for tracking the com-
mands and reports and returns: �action suc-
cessful' if the allocation succeeds or �action
failed' if the allocation fails.

IRG-4 Con�guration Check in Reset
Procedure of InRegistry (closes
BAS-3)

Same value as in Base Component

IRG-5 Con�guration Action in Reset
Procedure (closes BAS-4)

Clear all information about tracked InCom-
mands and InReports; return: �action suc-
cessful'.

IRG-6 Shutdown Action of InRegistry
(closes BAS-5)

Clear all information about tracked InCom-
mands and InReports.

IRG-7 Execution Procedure of InReg-
istry (closes BAS-6)

Same value as in Base Component

Table 7.20: Requirements Applicable to InRegistry Component

Req. ID Requirement Text

P-IRG-1/S The CORDET Framework shall provide an InRegistry component as an ex-
tension of the Base Component .

P-IRG-2/A The InRegistry component shall support the adaptation points IRG-*.

P-IRG-3/S The InRegistry shall o�er an operation StartTracking to run the Registry Start
Tracking Procedure of �gure 7.7.

P-IRG-4/S The InRegistry shall o�er an Update operation which runs the Registry Update
Procedure of �gure 7.7.

P-IRG-5/S The InRegistry component shall provide an API through which the state of a
command or report in the repository (PENDING, ABORTED, and TERMI-
NATED) can be queried.

P-IRG-6/S The InRegistry shall use the command/report identi�er attribute as the key to
store and make available information about commands and reports.

P-IRG-7/C An application shall instantiate the InRegistry component only once.

c©2019 P&P Software GmbH. All Rights Reserved. 77

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

A Veri�cation Models

This section presents the models which have been used to formally verify some of the prop-
erties o�ered by the CORDET Framework. The veri�cation models are written in Promela
and the veri�cation of the properties has been done using the Spin model checker.

A.1 The OutStream Model

In section 6.2.1, four properties are de�ned on the OutStream. Two of these properties �
properties P3 and P4 � are veri�ed on the Promela model listed below. Note that the model
is based on blocking middleware which is periodically polled for its availability. From a
veri�cation point of view, this is the most general case for the following reasons:

• The case of a non-blocking middleware obviously represents a special case of a blocking
middleware.

• The polling approach is more general than a call-back approach because a call-back
approach implies that, when the middleware makes a transition from NOT_AVAIL
to AVAIL, then, eventually, operation ConnectionAvailable is called upon the Out-
CmdStream. A polling approach implies the same thing but, in addition, it also
implies that operation ConnectionAvailable may be called when no transition from
NOT_AVAIL to AVAIL has taken place.

Property P3 states that there never builds up a backlog of unsent packets in an OutStream.
The veri�cation of this property is based on a never claim. The never claim checks that the
following LTL formula is always satis�ed:

1 #define r (mwState == AVAIL)
2 #define q (outCmdStreamLock != CMD_MNG)
3 #define s (outCmdStreamPQ ==EMPTY)
4 ((<> [] q) && (<> [] r)) -> ( (<> [] s) )

This formula can be expressed as follows: if the OutManagers stop making requests for fresh
packet to be sent and if the middleware connection remains available, then the OutStream
will eventually �ush its packet queue. Note that this property only holds under conditions
of weak fairness.

Property P4 states that the OutStream never deadlocks. This property is veri�ed because
the Promela model below has no invalid end states.

The model veri�es an additional property P5 which states that, at entry in state READY,
the packet queue is always empty. This property is veri�ed through an assertion.

1 /*
2 * A. Pasetti - P&P Software GmbH - Copyright 2010 - All Rights Reserved
3 *
4 * OutStream Model
5 *
6 * The following aspects of the operation of an OutStream are modelled:
7 * 1. Two OutManagers on different threads asking for commands to
8 * be sent out.
9 * 2. A blocking middleware (MW) that can be either available or unavailable.

10 * 3. The MW may change from NOT_AVAIL to AVAIL or viceversa at any time.
11 * 4. The state of the MW is monitored by a dedicated process which
12 * calls ConnectionAvailable on the OutStream when it finds that
13 * the MW connection is available (polling mechanism).
14 * 5. The management of the sequence counter is not modelled.
15 * 6. Operations on OutStream are called in mutual exclusion.
16 * 7. No specific size of the Packet Queue (PQ) is modelled; the PQ can be

c©2019 P&P Software GmbH. All Rights Reserved. 78

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

17 * empty , not full , or full.
18 */
19

20 mtype = {AVAIL , NOT_AVAIL , BUFFERING , READY , SUCCESS , FAILURE };
21 mtype = {EMPTY , NOT_FULL , FULL}; /* State of Packet Queue in OutStream */
22 mtype = {CONNECTION_AVAILABLE , SEND}; /* Commands to OutStream */
23 mtype = {FREE , CMD_MNG , CNCT_MON }; /* Owner of the lock on the OutStream */
24 mtype mwState = NOT_AVAIL;
25 mtype outStreamState = READY;
26 mtype outStreamPQ = EMPTY;
27 mtype outStreamLock = FREE;
28 bool sendReqSuccessful = false;
29

30 /* A call to this macro corresponds to sending a command to the OutStream
31 * State Machine.
32 */
33 inline outStream(cmd) {
34 if
35 :: (outStreamState == BUFFERING) && (cmd== CONNECTION_AVAILABLE) ->
36 do
37 :: (outStreamPQ !=EMPTY) ->
38 atomic {
39 if
40 :: mwState == AVAIL -> sendReqSuccessful = true;
41 :: else -> sendReqSuccessful = false;
42 fi; }
43 if
44 :: sendReqSuccessful -> outStreamPQ = EMPTY;
45 :: sendReqSuccessful -> outStreamPQ = NOT_FULL;
46 :: !sendReqSuccessful -> break;
47 fi;
48 :: (outStreamPQ ==EMPTY) -> break;
49 od;
50 if
51 :: (outStreamPQ ==EMPTY) -> outStreamState = READY;
52 :: (outStreamPQ !=EMPTY) -> outStreamState = BUFFERING;
53 fi;
54 :: (outStreamState == BUFFERING) && (cmd==SEND) ->
55 if
56 :: (outStreamPQ ==FULL) -> skip; /* Report Error */
57 :: (outStreamPQ !=FULL) -> outStreamPQ = NOT_FULL;
58 :: (outStreamPQ !=FULL) -> outStreamPQ = FULL;
59 fi;
60 :: (outStreamState ==READY) && (cmd==SEND) ->
61 assert(outStreamPQ == EMPTY); /* Property P5 */
62 atomic {
63 if
64 :: mwState == AVAIL -> sendReqSuccessful = true;
65 :: else -> sendReqSuccessful = false;
66 fi; }
67 if
68 :: sendReqSuccessful -> skip;
69 :: else -> outStreamPQ = NOT_FULL;
70 outStreamState = BUFFERING;
71 fi;
72 :: else -> skip;
73 fi;
74 }
75

76 /* Processes representing the OutManagers which request that commands
77 * be sent out. A send request is modelled as a call to operation Send
78 * on the OutStream.
79 * Each OutManager runs for some time and then terminates. This models
80 * the fact that the OutManager stops sending out commands.
81 */
82 active [2] proctype OutManager () {
83 do
84 :: atomic{ (outStreamLock ==FREE) -> outStreamLock = CMD_MNG };
85 outStream(SEND);
86 outStreamLock = FREE;
87 :: true -> break;
88 od;
89 }
90

91 /* Process representing the MW connection.
92 * The connection toggles between AVAIL and NOT_AVAIL.

c©2019 P&P Software GmbH. All Rights Reserved. 79

www.pnp-software.com


www.pnp-software.com

PP-DF-COR-0002
Revision 2.0

Date 05/05/2019

93 */
94 active proctype mwConnection () {
95 do
96 :: mwState ==AVAIL -> mwState=NOT_AVAIL;
97 :: mwState == NOT_AVAIL -> mwState=AVAIL;
98 od;
99 }

100

101 /* Process representing the thread which monitors the MW availability and
102 * which , when it finds the connection available , calls operation
103 * ConnectionAvailable on the OutStream.
104 */
105 active proctype mwCnctMonitor () {
106 do
107 :: mwState ==AVAIL ->
108 atomic{ (outStreamLock ==FREE) -> outStreamLock = CNCT_MON };
109 outStream(CONNECTION_AVAILABLE);
110 outStreamLock = FREE;
111 od;
112 }
113

114 /* Define variables used to formulate never claims */
115 #define r (mwState == AVAIL)
116 #define q (outStreamLock != CMD_MNG)
117 #define s (outStreamPQ == EMPTY)
118

119 /* The following formulas are used as (positive forms of) never claims */
120

121 /* P3: There is no backlog of unsent packets in the OutCmdStream.
122 * This property is satisfied if, when the OutCmdManagers permanently
123 * stop making requests for fresh packets to be sent and the connection
124 * remains available , then the packet queue eventually becomes emtpy. */
125 ltl P3 {((<> [] q) && (<> [] r)) -> ( (<> [] s) )}

./Veri�cationModel/PollingOutCmdStream.pml

c©2019 P&P Software GmbH. All Rights Reserved. 80

www.pnp-software.com

	Change History
	Referenced Documents
	Introduction
	Software Framework Concept
	Service Concept
	Objectives of CORDET Framework
	Definition of Command and Report Concepts
	Definition of CORDET Components
	Definition of Standard Services
	Definition of CORDET Components

	CORDET Support For Application Development
	Relationship To Packet Utilization Standard (PUS)
	Middleware Layer
	Specification Format
	Heritage

	Application Start-Up and Shut-Down
	Component Instantiation
	Component-Level Start-Up and Shutdown
	Application-Level Start-Up and shutdown

	Command and Report Concept
	Command Concept 
	The Command Attributes
	The Command Conditional Checks
	The Command Actions
	Command Lifecycle

	Report Concept 
	The Report Attributes
	The Report Conditional Checks
	The Report Actions
	Report Lifecycle


	Packet Interface
	Middleware Assumptions
	Out-Going Interface
	Incoming Interface

	Packet Interface Concept and Specification
	The OutStream Component
	The InStream Component
	The OutStreamRegistry Component


	Command And Report Management
	Management of Out-Going Commands and Reports
	The OutComponent Component
	The OutFactory Component
	The OutLoader Component
	The OutManager Component
	The OutRegistry Component

	Management of Incoming Commands and Reports
	The InFactory Component
	The InLoader Component
	The InCommand Component
	The InReport Component
	The InManager Component
	The InRegistry Component


	Verification Models
	The OutStream Model


